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Executive Summary

Background and Objectives

DYNAMO-HIA i) develops a dynamic modeling tool to quantify the health im-

pact of policies by comparing a projected reference scenario with a projected

intervention scenario and ii) applies it to selected life-style related health-

determinants and resulting diseases across EU countries. The tool has public

health practitioners as its target audience and will be made publicly available.

DYNAMO-HIA is funded by the Public Health Executive Agency (PHEA) as

part of the EU Public Health Program 2003-2008 of the European Commis-

sion’s Directorate General for Health and Consumer Affairs (DG SANCO),

with co-financing from the Erasmus Medical Center Rotterdam, the Institute

of Public Health and the Environment in the Netherlands, the Catalan Insti-

tute of Oncology, the International Obesity task force, the London School for

Hygiene and Tropical Medicine, the Haughton Institute in Dublin, and the

Instituto Tumori in Milan. In summary, this three year project (commenced

in May 2007) will:
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• develop a quantitative modeling methodology to estimate the health im-

pact of policies that change health determinants and implement this in

a stand-alone software (DYNAMO-HIA)

• compile and make available data sets (consistent across EU countries) on

a few example risk factors (smoking, obesity, and alcohol consumption)

and their effects on four example diseases (cancer, cardio vascular disease

(CVD), diabetes, and chronic obstructive pulmonary disease (COPD))

in the European Union and thus provide ready-for-use data for these

determinants and diseases

• illustrate the tool by assessing the health effects of several health-relevant

policy options with regard to these health determinants

Model

The tool aims to facilitate quantitative health impact assessment (HIA). An

HIA compares the population health impact of one or more policy interven-

tions with a baseline scenario. However, no satisfactory simulation tool exists

that can be used to quantify the effect of changes in health determinants, re-

sulting from a policy change, on health outcomes. The DYNAMO-HIA tool –

which intends to fill this gap – has to strike a balance between being i) a suf-

ficiently realistic formal model, ii) user friendly, and iii) able to accommodate

commonly available epidemiological data to ensure wide applicability. To rec-

oncile these multiple targets, we developed a set of desiderata and constraints

to evaluate existing models and guide the development of the new tool. Hence,
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the specification process was based on existing models (such as PREVENT,

ARMADA, or RIVM-CDM) and focused on synthesizing already established

features.

DYNAMO-HIA will be a dynamic simulation model with discrete time

steps in 1-year intervals. The population heterogeneity will allow differentiation

according to sex, age, risk factor, and disease. DYNAMO-HIA will feature

a general disease model (allowing to model multiple chronic diseases) and is

based on a multi-state modeling approach. The tool models explicit risk factor

states and hence allows for mortality selection. Apart from health determinants

(e.g. life style related or environmental risks), diseases can be risk factors for

other diseases. The model will mainly need standard epidemiological data such

as disease incidence, prevalence, mortality, and relative risks (by sex and age).

Risk factors can come in three different forms: continuous, in classes (up to

9 categories), and in classes where duration of class membership is important.

The model is envisioned to accommodate up to three different disease process:

chronic diseases, partly acutely fatal diseases, and diseases where the excess

mortality depends on the duration of the diseases. The policy induced change

in risk factor prevalence or risk factor transition rates will be determined by

the user. Hence, the tool can be used after the user has specified the effect

of policies on health determinants. Several population based health outcome

measures (such as life expectancy or DALE) will be readily available to quan-

tify the difference between the reference and the different policy scenarios. The

suggested prediction span is about 10 to 15 years.
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Data on Risk Factors and Diseases

The second part of the project is to derive and make publicly available in-

ternally consistent incidence, prevalence and disease mortality (IPM) data by

age and sex for the example diseases. Furthermore, data on risk factor preva-

lence and relative risks quantifying the association between the example risks

factors, the example diseases, and total mortality are collected. Those data

will be ready to use with the developed software. The risk factors are obesity,

alcohol consumption, and smoking. The diseases are cardiovascular diseases

and diabetes, chronic obstructive lung disease (COPD), and (selected) cancer

sites.

The collected data will be compiled from already existing data sources. It is

intended – depending on availability – to collect these data for each EU member

state. The covered time span used as the baseline for the data collection is

between 2000 and 2006. To achieve more stable estimates the data of several

calendar years might be pooled. Stable and internally consistent data are

of great importance for a dynamic model as the errors propagate with each

simulated time step.

Future Steps

After the first expert meeting, the model specification will be finalized and the

technical model will be implemented in a software, with a special emphasis on

user friendliness. Moreover, input data for the tool will be compiled. With the
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completed tool and the example datasets a number of instructive scenarios for

practical health policy interventions will be simulated. The final model and

the accompanying data sets will be launched during the second expert meeting

(including a training seminar) in 2010. The software will include an extensive

manual that – inter alia – gives advice on how to construct policy scenarios

(e.g. illustrative examples, how to conduct sensitivity analysis etc).

vii



Work Packages

The DYNAMO-HIA consists of 11 work packages:

1. Coordination of Project
Johan Mackenbach, Wilma Nusselder, Jet Smit

2. Dissemination of the Results
Jet Smit

3. Evaluation of the Project
Johan Mackenbach

4. Model Specification
Wilma Nusselder, Stefan Lhachimi

5. Construction of Software Tool
Hendriek Boshuizen, Sido Mylius, Pieter van Baal

6. Smoking
Estevez Munoz

7. Overweigh/Obesity
Tim Lobstein, Rachel Jackson-Leach, Philip James

8. Alcohol
Martin McKee, Joceline Pomerleau, Kate Charlesworth

9. CVD and diabetes
Kathleen Bennett, Simon Capewell, Julia Critchley, Bernie McGowan

10. Cancer
Andrea Micheli, Paolo Baili, Camilla Amati, Ilaria Casella, Natalia Sanz

11. Definition of Scenarios and COPD
Wilma Nusselder, Stefan Lhachimi, Margarete Kulik
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Section 1

Overview

The objective of this document is to outline the specification process for a

Health Impact Assessment (HIA) tool within the DYNAMO-HIA project. A

tool in this context is a piece of computer software being able to simulate

different policy proposals and their effects on population health via changes

in risk factor exposure. In the context of quantitative HIA, a tool compares a

projected reference scenario with a projected intervention scenario. The focus

of such models is to quantify the effect of a policy on net population-health, not

the prediction of future population health as such. Based on a set of criteria

derived from the objectives of HIA, we conclude that no available software is

able to do so sufficiently; however, many interesting features and insights about

constructing such a tool can be gained from the already existing literature.

In section 2, we outline briefly the setting and the objectives of an HIA

exercise. From this starting point, we develop seven criteria to evaluate existing
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SECTION 1. OVERVIEW

HIA tools and guide the development of the new DYNAMO-tool. Furthermore,

we outline three constraints that have to be taken into account when designing

a new tool. Then, we outline principles of validity within a quantitative HIA

exercise. Finally, we give an account of a number of already existing models,

that guide us in the design process.

In section 3, we give some background information about computer simu-

lations. It starts with a brief review of the basic technical choices for computer

simulations. Then an overview about the main simulation approaches taken

in HIA is given. Next, we introduce multi state models (MSM) for simulating

chronic diseases. The section concludes with some considerations concerning

the modeling of policies and on how to achieve validity in a computer simula-

tion.

In section 4, we propose the model specification for the DYNAMO-tool.

This is a non-technical description based on the considerations made in the pre-

vious sections. In section 5 the preliminary technical outline of the DYNAMO-

tool is presented. In the appendix (section 7) an overview of the reviewed

models is given, including search strategy and vignettes of selected models.
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Section 2

Health Impact Assessment

2.1 Background

The most widely used definition stems from the Gothenburg consensus paper

and states HIA is ’a combination of procedures, methods, and tools by which

a policy, program, or project may be judged as to its potential effects on

the health of a population, and the distribution of those effects within the

population. [World-Health-Organization 1999].

HIA is a multi stage process divided into the following steps [Project-Group

2004; Mindell et al. 2003; Parry et al. 2005; Cole and Fielding 2007]:

• Screening

• Scoping

• Effect Analysis

• Reporting of Findings

3



SECTION 2. HEALTH IMPACT ASSESSMENT

• Monitoring and Evaluation

A quantitative HIA-tool compares two or more policy options and quantifies

the difference in the projected health outcomes. This is done in the stage of

effect analysis and consist of three different tasks that an HIA tool has to

address:

• Description of the baseline situation

• Estimation of change in exposure to determinants of health

• Estimation of change in health outcomes

To estimate the change in health outcomes from the change in exposure to

determinants of health, quantitative models are needed (see Figure 2.1 for a

conceptual overview and role of a quantitative tool).

Figure 2.1: Conceptual overview of effect analysis and role of a quantitative
tool
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SECTION 2. HEALTH IMPACT ASSESSMENT

2.2 Objectives of HIA

An HIA exercise usually has three main objectives. First, to predict the impact

of a policy1, second, to allow participation of stakeholders in the assessment

process, and, third, to inform the decision making process [Parry et al. 2005].

The first objective is closest to epidemiological considerations. The causal

pathway(s) by which the policy affects health have to be identified. This is

done through risk factor exposure (the determinants of health). When the

causal structure is established, HIA aims to predict the health changes for the

whole population and the distribution within the population. Not only the net

effect is important, but also to identify winners and losers of a policy. It is

necessary to be as thorough as possible and to identify the negative and the

positive effects of the policy on health.

Some regard the second objective – to make the health assessment of a pol-

icy proposal a participatory endeavor – as the key feature of the HIA process.

The main arguments are that residents have the right to be informed and are

often the best source of information in an assessment. They know their com-

munity best and are the ones who are affected by the decision [Kemm 2007].

Critics argue that it is onerous to motivate community members to partici-

pate and for larger projects it becomes impracticable. Certainly, for policy

decisions at the national level it will be difficult to conduct an all-inclusive

process [Parry and Wright 2003]. However, for every decision taken there are

1The terms policy, project, proposal, and program will be used interchangeably.
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SECTION 2. HEALTH IMPACT ASSESSMENT

different stakeholders with varying preferences involved and every HIA must

accommodate their legitimate interests by being as transparent as possible.

Third, an HIA has to inform the decision making process with applicable

knowledge. Just giving a plethora of (simulated) data or a simple yes /no

answer will not be convincing in the policy arena. The derived information has

to be put into an understandable and applicable form for the specific context.

This objective stems partly from the practical observation that the assessment

is normally done by different people than the actual decision taking. Although,

HIA is becoming more and more common, many administrative units simply

lack the adequately trained personnel to conduct an HIA [Lock and McKee

2005]. Furthermore, a policy process needs to have results in a timely fashion

and the recommendations must be evidence based.

2.3 HIA-based Model Requirements

From the setting and objectives of an HIA process some criteria can be pos-

tulated that a quantitative HIA tool has to fulfill. Some criteria are binary

and some can be thought along a continuum of maximization or minimization.

But the development of a tool also faces constraints. These stem from differ-

ent sources: partly from the nature of the HIA process, partly from pragmatic

considerations as resources to implement and utilize such a tool are limited.

Furthermore, certain constraints have to be taken into account as well.
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SECTION 2. HEALTH IMPACT ASSESSMENT

2.3.1 Desiderata for an HIA-Tool

First, the tool has to be publicly available.2 As HIA is a democratic/parti-

cipatory process, different stakeholders must have the opportunity to verify

the results for themselves and test policy-scenarios of their own liking. Fur-

thermore, a publicly available tool is open to peer review by the academic

community. As a result it increases the trust a user can have in the simulated

outcomes.

Second, the tool must be able to accommodate heterogeneous populations.

An increased net-health gain on the population level is questionable when some

members will be worse off. Certainly, a policy might be acceptable when a few

suffer slightly and the majority of the population benefits. However, this has

to be made explicit. It is important to identify the winners and the losers of a

policy.

Third, the tool should be based on epidemiological evidence that can be

inserted by the user in a form that is readily available from databases or from

the epidemiological literature. The modeling of chronic diseases at the popu-

lation level is usually done within the framework of multi state models (MSM)

[Commenges 1999]. MSM are very flexible and allow the modeling of different

(single and multiple) diseases within a population. Loosely speaking, two ap-

proaches for modeling the causal pathway of a disease process for a tool can

be contrasted: a general health/disability model or a disease specific model.

The former models directly the effect from a given risk factor prevalence in

2The order of the criteria does not reflect any order of importance.
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SECTION 2. HEALTH IMPACT ASSESSMENT

the population on disability and mortality. The disease specific approach is

an explicit modeling of the disease states: starting with risk factor exposure,

the effect on disability and mortality is modeled via incidence and prevalence

of the disease(s) in question. Furthermore, the effects of risk factor exposure

on all-other mortality3 can be accounted for explicitly. The disease specific

approach, despite its higher complexity, is to be preferred. Not only is epi-

demiologic evidence concerning the relationships between risk factor exposure

and incidence and mortality richer and more reliable then for the former, it

also allows to model the causal chain of the disease and hence yield more useful

information.

However, the challenge in building such models is not primarily in specify-

ing the MSM itself, but in the translation of the epidemiological evidence into

transition rates as needed in these models. Epidemiological data such as inci-

dence and mortality rates reflect the experience of an entire population, while

such models require separate transition rates for different sub-populations,

such as smokers and non-smokers, with or without a disease. The tool there-

fore should also provide the user with an implemented method to translate

commonly available epidemiologic data into transition rates.

Fourth, the tool should be dynamic. Irrespective what exact epidemiologic

model is chosen, the tool should be able to show the changes in population

health over time. Not only the outcome matters, but also how and when it is

reached. A long term health gain might be achieved by a health decrease in

3This becomes important if not all associated diseases are modeled and the risk factor
affects other diseases as well.
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SECTION 2. HEALTH IMPACT ASSESSMENT

the short run. Although this might be acceptable, it has to be identified and

made explicit by an HIA tool.

Fifth, an HIA-tool should be generic in the sense that it could be used

for different assessment exercises. The design and implementation of an HIA

tool is a rather time consuming endeavor. Furthermore, it is for the user very

onerous to get acquainted with a new model for every assessment. So it should

be flexible enough to assess the effects of varying policy proposals and be able

to model different diseases with varying risk factors.

Sixth, different kinds of outcome measures should be available. The tool

intends to inform decision makers and given the decision at hand, different

measures convey different meanings. Furthermore, different stakeholders might

put different values on different measures. Several measures exist, such as life

expectancy, prevented death, or health adjusted life expectancy. It is certainly

open to discussion which outcome measures are more useful in which context,

in particular as the choice might have ethical implications [Robberstad 2005;

Gold et al. 2002]. However, the tool should be broad enough to satisfy the

needs of different HIA exercises and stakeholders.

Seventh, a general, real life population should be simulated. In reality,

populations differ tremendously in their age composition. As age does have

an effect on most disease processes, a given change in risk factor exposure

can yield different outcomes in different populations. A simple life table or a

patient level population cannot model such differences. Furthermore, if longer

time frames are used, the tool must be able to account for changes in the size
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SECTION 2. HEALTH IMPACT ASSESSMENT

and the sex distribution of populations.

2.3.2 Constraints an HIA-Tool faces

Data availability – Every quantitative tool is limited by the data that is avail-

able to feed it. It is of limited use to build a very detailed model when there

is virtually no data to use it. In the case of an HIA tool the data will be –

most likely – annual and at the aggregated level differentiated by age and sex;

although, in some instances more detailed data at the individual level derived

from questionnaires might be obtainable.

Implementation – Every tool faces the risks of too much complexity. If a

tool is too complex it might become too difficult to understand. In particular,

it might become very onerous or impossible to establish formal validity (see

2.4). In general, parsimonious modeling is considered a virtue [Bratley et al.

1987]. Furthermore, more pragmatic reasons have to be considered: a complex

model takes more time and resources to design, build, feed with data and most

likely to communicate to a user. The former might be solvable given enough

research funding. But the later should not be ignored light heartily. An

HIA tool should be able to be used by a larger group of people than just the

designers of the tool (see next paragraph). Hence, the used (disease) model

has to strike the balance between realistic and simple.4

4One should note, that complex models usually have a lower predictive power than more
simple models [Spielauer 2007].
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SECTION 2. HEALTH IMPACT ASSESSMENT

Policy-User Side – Experts, such as the designer of a tool, often get carried

away and loose sight of what reasonably can be expected [Brailsford 2005]

from the user of a tool. However, the target audience should always be kept

in mind.5 It is important to recall, that the tool has to satisfy the needs and

the rationale of a policy arena. In this arena decisions often have to be taken

under strong time pressure that does not allow to wait a longer period of time

for ”perfect” information.6 Hence, a tool has to aim to be able to yield results

in a timely fashion.

It needs to be accessible enough that with sub-optimal resources (technical

and human) the tool can be used and an analysis can be conducted. This

translates roughly into a tool that should be usable with a standard personal

computer and with a post-graduate education in the (public) health field.

2.3.3 Bringing together Desiderata and Constraints

Table 2.1 gives a cross tabulated overview about criteria and constraints point-

ing out the implications.

5This point is borderline between a constraint and a criterion as it is certainly a criterion
to maximize user friendliness. But we decided to put it under constraints as to increase our
awareness that the end-user should be the focus of all modeling undertakings.

6In this sense not taking an action or postponing it is a decision as well.
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SECTION 2. HEALTH IMPACT ASSESSMENT

2.4 Validity in HIA

Every model is only as good as its ability to produce valid results. Validity,

however, is a very broad concept; for applications in the field of HIA, Veerman

et al. [2007] operationalizes validity by suggesting three different criteria:

• plausibility – the degree to which the theoretical framework of the tool is

deemed to be understandable, applicable, and plausible by researchers,

external experts, and stakeholders (this is sometimes also labeled face

validity )

• formal validity – a tool should adhere to the rules of logic to reach its

conclusions, the correct method should be applied in a correct way

• predictive validity – the predictions of a tool should be confirmed by the

observed facts

The first criterion might seem vague at first sight, nevertheless, it is of

utmost importance that a tool used in an open process such as HIA must be

acceptable by all parties involved. This, of course, cannot mean it should be

simplistic. But a competent person should be able to judge the appropriateness

of the tool for the task at hand.

The second criterion is inherent to all research endeavors. It is interrelated

to the first criterion but to be treated distinctive. Sometimes procedures are

accepted despite the fact that their formal validity is not established. For a

quantitative tool, however, this point is very important. It must be internally

coherent to be able to produce valid and reliable results.
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The last criterion can be considered the holy grail of HIA (or social sciences

for that matter). Certainly, as an HIA makes predictions, a model that makes

predictions is only truly valid when it is confirmed by the observed facts. A

problem is that i) between prediction and observation of the true facts a long

time lag exist, ii) an HIA might lead to a decision that alters the future in such

a way that the originally predicted values might not be realized at all, and

iii) a model is always a simplification of the reality, purposefully neglecting

certain factors that have an influence. Hence, establishing ”full” predictive

validity within a social science/ behavioral setting is virtually impossible.7

Furthermore, in the case of an HIA exercise one usually compares a projection

of the reference scenario with the projection of one (or more) intervention

scenarios. If the factors that are excluded in the model do not have a different

overall effect in the intervention scenario than in the reference scenario – such

as an improvement in treatment of a disease, that lowers the disease specific

mortality rate – these affect all scenarios and should not alter the ranking of

interventions.

7A nice aphorism in this context is: There are no right or wrong predictions, but only
good or bad ones (methodologically speaking).
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2.5 Review of Selected Computer Simulations

used for HIA

A leitmotif of the DYNAMO-HIA is to learn from already existing models

instead of creating a completely novel approach. This should ensure the devel-

opment of a workable model based on sound evidence and existing experience.

Hence, in our design we are guided by both, the desiderata described in section

2.3 and an evaluation of existing software. Currently, no existing model does

fully comply with all desiderata. Models that score very high on the technical

requirements are normally designed for internal use and are tailored to the

specific data situation of a certain country. Furthermore, they often require

advanced programming skills and in-depth knowledge of the program. On the

other hand, models which are specifically designed for public use are (virtu-

ally) exclusively intended for a single disease or risk factor, respectively, hence

not being able to model overall population health.

In this section we give a brief account of the most important models re-

viewed for the purpose of DYNAMO-HIA. We outline their most attractive

features for an HIA tool and the characteristics which makes them less suit-

able for a general, widely usable HIA tool. The selection criteria for the models

that mainly guided our design process are outlined in section 7.3 where also

detailed vignettes of these models are presented. Furthermore, we give in

the appendix (section 7) an overview of all reviewed models (including search

strategy).
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Proportional Multi State Life Table (MSLT)

The proportional multi state life table [Barendregt et al. 1998] has a number

of attractive features for HIA. First, it can model multiple diseases and assess

the effect of risk factors through these diseases on population health measures

such as total life expectancy and DALE. The main weakness its is lack of dy-

namic modeling capability and thus it cannot show the development of health

outcomes over time. It is, however, a very transparent tool that uses data

that are widely available. A future HIA-tool should certainly account for this

attractive characteristic.

PREVENT

PREVENT is a dynamic model that models a real life population through

time. It is generic as it can be applied to several diseases and risk factors.

Risk factors can be both, categorical and continuous, and a risk factor can be

associated with more than one disease and a diseases can be a risk factor for

other diseases. It is based on a epidemiological multi state model of chronic

disease, using an incidence-prevalence-mortality framework. PREVENT in-

cludes disease-specific and overall population health outcomes, such as life

expectancy and DALE. The presentation of the output of PREVENT clearly

contrasts the reference and intervention scenario over time. A limitation of

the current PREVENT version is that it does not model explicit risk factor

states, but is based on the epidemiological effect measure: ’population impact

fraction’ (PIF). In doing so it operates at the population level. This reduces
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the data requirements but as a result mortality selection cannot be handled

and differences in risk factor exposure between cohorts are not included by

default. Furthermore, PREVENT is not publicly available.

A future HIA tool should share with PREVENT the dynamic modeling of

a real life population, using an IPM framework, the ability to handle both cat-

egorical and continuous risk factors, and the possibility to have diseases that

can be risk factors for other disease. Moreover, the graphic output possibilities

of PREVENT allow a comfortable communication of the simulation results.

The future DYNAMO-HIA tool should build on the PREVENT model by im-

plementing many of PREVENT’s output possibilities.

ARMADA

ARMADA is a dynamic software specially designed to fit within a health im-

pact framework. Among its attractive features is a generic disease model that

allows to model complex disease processes and co-morbidity explicitly. Dis-

eases can be risk factor of other diseases, remission can be modeled, and chronic

diseases – in principle – with an arbitrary large number of progression states.

A future HIA should strive for a similar flexibility in its disease model. A lim-

itation of ARMADA for a broader user base, however, is that it requires the

explicit specification of transition rates between every disease- and risk-state

combination. These data are rarely directly available but need to be calculated

from epidemiological data. Methods to calculate the transition rates from epi-

demiological data are not available within ARMADA. Moreover, the simulated
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length of the time step is equal to the age categories of the population, hence

requiring more detailed data for a more detailed projection path. Furthermore,

ARMADA is not (yet) publicly available.

RIVM-CDM

The RIVM-CDM contains many already mentioned features that are desirable

for a future HIA-tool. It is a dynamic model, and thus provides information

on the development of health outcomes over time. It provides not only disease-

specific but also overall population health outcomes, such as life expectancy

and DALE. Additionally it links risk factors to multiple diseases and death

and is based on a multi state model of chronic disease, using an incidence-

prevalence-mortality framework. A marked feature of the RIVM model is that

it contains modules that translate data-input from epidemiologic sources into

transition rates, and into initial values for the starting population by age, sex

and risk factor and disease. However, the model is not publicly available, and

moreover is implemented in the commercial software Mathematica, which is

not easily accessible to many potential users of an HIA-tool. Also the model is

tailored to fit to existing Dutch data, and hence is too specific to be used with

data across Europe. A future HIA-tool should include modules for translating

standard epidemiological data into transition rates between risk factor states.

DYNAMO-HIA will include this feature based on the existing RIVM-CDM

modules.
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POHEM

POHEM is a discrete event simulation (DES) developed by Statistics Canada.

It is a very comprehensive software which has been used in a wide array of

applications, among them cost-effectiveness analysis and policy evaluation for

several diseases. It has been tailored to the Canadian context where Statistics

Canada has access to individual (and longitudinal) data on health and socioe-

conomic status (income, marriage status etc.) and can simulate the behavior

of a dynamic population (not only health but also, for example, labor market

and marriage behavior). With those data very complex policy questions can be

simulated, but access to such data is very limited within the European theater.

Furthermore, a DES framework is very time-consuming to design and imple-

ment and only has added value with very detailed, matching data, moreover,

it cannot account for continuous risk factors. POHEM itself is not publicly

available.

Foresight Obesity Simulation

The Foresight Obesity Simulation (FOS) consists actually of two parts. The

first is a regression model to estimate future prevalence of BMI. The second

part is a micro simulation which quantifies the effect of a single risk factor

(BMI) on the incidence, total life expectancy, and costs of several diseases. A

distinctive feature of FOS is the ability to accommodate an external projection

of risk factor prevalence (through a regression model) within the dynamic sim-

ulation. FOS uses an individual sampling model and is still under development

and not publicly available.

19



SECTION 2. HEALTH IMPACT ASSESSMENT

T
ab

le
2.

2:
A

p
p
ly

in
g

cr
it

er
ia

to
se

le
ct

ed
m

o
d
el

s
(a

n
d

fu
rt

h
er

m
o
d
el

ch
ar

ac
te

ri
st

ic
s)

M
o
d

el
p

u
b

li
cl

y
a
v
a
il
a
b

le
h

et
er

o
g
en

eo
u

s
d

y
n

a
m

ic
o
r

st
a
ti

c
m

o
d

el
in

g
o
f

ri
sk

fa
ct

o
rs

a
n

d
ep

i-
d

em
io

lo
g
ic

d
a
ta

g
en

er
ic

o
u

tc
o
m

e
m

ea
su

re
s

re
a
l

p
o
p

u
-

la
ti

o
n

m
o
d

el
ty

p
e

u
n

ce
rt

a
in

ty

A
R

M
A

D
A

n
o

se
x

a
n

d
a
g
e

g
ro

u
p

s
d

y
n

a
m

ic
ex

p
li
ci

t
ri

sk
st

a
te

s,
n

ee
d

s
ex

-
te

rn
a
ll
y

p
ro

v
id

ed
tr

a
n

si
ti

o
n

ra
te

s

y
es

in
cr

ea
se

d
(o

r
d

e-
cr

ea
se

d
)

m
o
rt

a
li
ty

a
n

d
m

o
r-

b
id

it
y

b
y

ca
u

se

y
es

d
y
n

a
m

ic
li
fe

ta
b

le
n

o

F
o
re

si
g
h
t

O
b

es
it

y
2

n
o

se
x

a
n

d
a
g
e

g
ro

u
p

s
d

y
n

a
m

ic
ex

p
li
ci

t
ri

sk
fa

c-
to

r
st

a
te

s,
ri

sk
fa

ct
o
r

p
re

v
a
le

n
ce

ca
lc

u
la

te
d

ex
te

rn
a
ll
y

p
a
rt

ly
(o

n
ly

B
M

I
a
s

R
is

k
F

a
ct

o
r)

L
E

a
n

d
d

is
-

ea
se

co
st

s
y
es

In
d

iv
id

u
a
l

S
a
m

p
li
n

g
M

o
d

el

n
o

(f
o
r

th
e

si
m

u
la

ti
o
n

p
a
rt

)

P
O

H
E

M
n

o
in

d
iv

id
u

a
l

d
y
n

a
m

ic
u

n
li
m

it
ed

ri
sk

fa
ct

o
r

st
a
te

s,
in

d
i-

v
id

u
a
l

le
v
el

d
a
ta

y
es

L
E

,
D

A
L

E
,

co
st

s
y
es

D
is

cr
et

e
E

v
en

t
S

im
u

la
ti

o
n

y
es

(i
n

p
a
-

ra
m

et
er

s)

P
R

E
V

E
N

T
n

o
se

x
a
n

d
a
g
e

g
ro

u
p

s
d

y
n

a
m

ic
P

a
r/

P
if

,
a
g
g
re

g
a
te

d
a
ta

y
es

L
E

,
D

A
L

E
,

co
st

s
y
es

d
y
n

a
m

ic
li
fe

ta
b

le
n

o

M
S

L
T

y
es

se
x

a
n

d
a
g
e

g
ro

u
p

s
st

a
ti

c
P

a
r/

P
if

,
a
g
g
re

g
a
te

d
a
ta

y
es

L
E

,
D

A
L

E
n

o
p

er
io

d
li
fe

ta
b

le
n

o

R
IV

M
-

C
D

M
n

o
se

x
a
n

d
a
g
e

g
ro

u
p

s
d

y
n

a
m

ic
ex

p
li
ci

t
ri

sk
fa

ct
o
r

st
a
te

s

y
es

L
E

,
D

A
L

E
y
es

se
v
er

a
l

(d
y
n

a
m

ic
li
fe

ta
b

le
a
n

d
IS

M
)

ex
p

er
im

en
ta

l
o
p

ti
o
n

fo
r

R
R

20



Section 3

Computer-Based Simulations

A computer simulation for the purpose of HIA tries to answer the question

What if? by simulating a policy intervention using a model and yielding num-

bers that allow to assess the effects of an intervention on population health

compared to a baseline scenario. In this section we start with giving a stylized

overview of some terminology and concepts used in the field of computer sim-

ulation. We then describe five different modeling approaches that have been

used for HIA tools in the past. The description focuses on the strengths and

weaknesses of these approaches. There is usually a trade-off between realistic

and detailed modeling on the one side versus high implementation costs, trans-

parency and (almost) prohibitive data needs on the other. We then outline the

different approaches of disease modeling within a multi state modeling frame-

work. Moreover, we outline some considerations about how to include the

policy effect in a simulation. Finally, we outline how to evaluate and validate
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SECTION 3. COMPUTER-BASED SIMULATIONS

a (computer) simulation model.

3.1 Terminology of a Computer Simulation

Considerations about building computer simulations can be split in two parts.

The functional elements of a computer simulation and the substantive side

– how the theory about the disease process is modeled. This dichotomy is

somewhat artificial, as certain substantive features require the use of certain

functional elements and vice versa.1

3.1.1 Functional Elements

In this subsection we review briefly the most important functional elements

of a computer simulation. Those provide the framework in which the disease

process is modeled and simulated. In Table 3.1 a stylized overview of functional

elements of a computer simulation is given.

Time Reference The time reference of a computer simulation can be either

static or dynamic. A static simulation model yields the change between two

time points (current vs. steady state) whereas a dynamic simulation describes

the development over time. Both might yield the same prediction about the

1A good example is the modeling of interactions. A computer simulation that right
from the beginning does not include interactions between entities cannot be used to model
infectious diseases (e.g. interaction between susceptibles and already infected). However, a
computer simulation that explicitly models interactions might be usable for chronic disease
modeling by setting the interaction to zero. But again, please keep in mind that this is a
heuristic dichotomy.
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SECTION 3. COMPUTER-BASED SIMULATIONS

Table 3.1: Stylized Overview of the Functional Elements of Computer Simula-
tions [Becker et al. 2005; Law and Kelton 2000; Brennan et al. 2006; Habbema
et al. in press]

Functional Element Dimension

Time reference Static Dynamic
Time Model Discrete Continuous
Change of State Deterministic Stochastic
Entity Level Individual Aggregate

future, but only a simulation with a dynamic time frame can tell what different

states were occupied in between. Hence, a dynamic model describes how the

process evolves over time.

Time Model If the choice has been made to use a dynamic time reference,

the question arises how time is simulated. The time model can be discrete

or continuous2. In discrete time the simulation is round based, every round

encompasses a fixed time length, such as one year. In continuous time, time

steps are not explicitly distinguished but a continues function is used to calcu-

late the waiting time to the next event. This difference can be of importance

for the way the (disease) process in question is modeled; whether one assumes

the variables to change continuously over time or instantaneously at a given

time point. A third option is a semi-discrete set up. The general time model

is still discrete, but continuous time is used within the rounds to calculate

when an event happens (within this round). This has the advantage, that for

2Loosely speaking it is pseudo-continuous time as a digital computer cannot simulate
real continuous time.
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competing risks – e.g. two or more events happen in one simulated round that

influence each other or are mutually exclusive – it can be clearly identified

which is occurring first [Willekens July 2007].

Furthermore, it is important to consider what data is available to feed the

model. If only annual data is available, a model using daily increments in the

simulation would usually not increase the explanatory power.

Entity Level and Interaction The choice of the entity level that is simu-

lated is somewhat heuristic. For a disease process the choices are: the individ-

ual level, a set of individuals (a cohort), or all individuals (a population). It

is important to note that within an entity that is modeled homogeneity is as-

sumed. When the entity level is chosen to be the cohort of all, say, 45-year old

men, then only statements about this group as a whole can be made. Nothing

could be said what happens within this set of individuals. This assumption

allows a simplification in the design and is often reasonable. To allow more de-

tailed analysis, the cohort can be differentiated further by splitting it up into,

say, smokers and non-smokers, obese and non-obese and so on. This increases

the number of distinctive entities to be simulated tremendously and may coun-

teract the main advantage, simplicity, of using a cohort or a population as the

entity level.

A simulation that chooses the individual as the entity overcomes this prob-

lem right away. Every individual possesses some characteristics that are of

interest (say, smoking status and BMI) and is sent individually through the
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simulation. Those characteristics now determine the transition probabilities

used in each simulation run. The outcome is a set of biographies driven by the

individual characteristics. To get a population estimate the derived biogra-

phies are aggregated. This leads to simulation variability as the individuals to

be simulated (or better their characteristics) are drawn from random distribu-

tions.3

Interaction, in the context of the functional dimensions of a simulation,

means whether the entities of a simulation and their current state influence

other entities within the simulation. A health related example would be the

modeling of infectious diseases where the dynamics of an epidemic depends on

the size and behavior of the infected part of the population. For the purpose

of chronic disease this issue is negligible.4

Change of state The change of state (or the change of a simulated variable)

in a simulation can be either deterministic or stochastic. In the former case,

what happens to the entity simulated at a given time step is non-random.

In a stochastic simulation the values, responsible for the value change of the

variables (transitions), are drawn from (specified) random variables.5 This

means that no two runs of the simulation are exactly the same. So, for a

3This is sometimes called first order uncertainty [Karnon 2001](compare 3.1.2 for details).
4Although it might be worthwhile to model across generations (e.g. differences in children

from smoker household vs. non-smoker households).
5This is sometimes called second order uncertainty [Karnon 2001] or parameter uncer-

tainty [Briggs 2000].
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stochastic simulation several runs are necessary to calculate what the expected

outcome is and how certain it is (compare 3.1.2 for details).

3.1.2 Variability, Heterogeneity, and Uncertainty in De-

cision Models

Three key terms in a health related simulation (or decision) model are:

• variability – differences between individuals that occur by chance,

• heterogeneity – differences between individuals that can be explained,

and

• uncertainty – the probabilistic aspect of a simulation modeling exercise.

We are going to discuss those in turn and relate them to a (hopefully) intuitive

analogy of a regression model. The exposition follows Briggs et al. [2006].

Variability Variability refers the phenomenon that – when modeling indi-

viduals – there will be always some variation. For example, a group of in-

dividuals has a mortality rate of .5 for a given time period. After the time

period we would expect half of the individuals being dead. But the outcome

at the individual level is binary, either dead or alive. In cohort based model

we would use the proportion of .5 to model the mortality and could avoid

variability. In a individual level based simulation, however, we would observe

a variation around the true probability of .5. The variability can be made

arbitrarily small, though, by increasing the number of individuals simulated.6

6Sometimes dubbed first order uncertainty.
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Heterogeneity Heterogeneity differs from variability in the sense that varia-

tion in the simulation outcome could be explained, given the necessary knowl-

edge. In the above example, the mortality rate could actually differ by sex

(say, .4 for women and .6 for males). If a model would include this parameter

(sex) this source of variation would be reduced. Heterogeneity is not a form of

true uncertainty, as we know with certainty whether an individual is male or

female. What we do not know is if the mortality rates differs conditional on

certain parameters.

Uncertainty The term uncertainty in a health model usually refers to the

uncertainty around input parameters (second order uncertainty). From the

example above, this would be the value for mortality. We might have a point

estimate (from a study) that says males have a mortality of .6, but there is

uncertainty – in the form of a confidence interval – around it.

Another form of uncertainty is the so called model uncertainty, sometimes

also dubbed structural uncertainty. This refers to the lack of full knowledge

whether the mathematical structure of the simulation model is capturing the

real life phenomenon truly. One has to note that the concept of model uncer-

tainty derives from the field of statistics, where models are usually somewhat

simpler and it is less onerous to test different specifications.

Regression Analogy Think of a standard linear regression model:
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Y = α +
k∑

i=1

βiXi + ε

In this analogy the dependent variable Y would be the output of the simu-

lation model. The coefficients α and β are the input parameters of the model.

Now, the coefficient β models the heterogeneity in the sense that different val-

ues of X lead to different values for Y . To capture additional heterogeneity

an additional characteristic (variable Xk) and input parameter (βk) is needed.

The parameter uncertainty in an simulation model is similar to the standard

errors of the regression estimates for the coefficients α and βi. The variability

of a simulation model is represented by the error term epsilon. The model

uncertainty refers to the question whether we can truly assume an additive

regression model, or whether, say, a multiplicative specification would be more

appropriate.

3.2 Common Modeling Approaches in HIA

The presented selection of common modeling approaches is derived from actual

models used for HIA (see appendix). Every reviewed model can be categorized

in (at least partly) one of the following five approaches.

28



SECTION 3. COMPUTER-BASED SIMULATIONS

Decision Trees

Decision Trees are very simple models originating in decision analysis. Usually,

at a given node, two options are modeled and assigned a probability. This is

repeated at every node until a desired set of outcome states is reached. The

model is at the aggregate level; to get population numbers a cohort is assumed

and ’sent’ through the decision tree. The probabilities of outcome give the

fraction of the cohort that will reach this state eventually, hence the model is

deterministic. The model is static as only one future state can be observed.

No interactions between units are modeled.

Period Life Table

A basic approach is a period life table (or single cohort model). A fixed num-

ber (usually 100,000) of people is exposed to transition probabilities. It can be

just a single transition that is modeled (say, mortality) or several transitions

like disability, disease, and mortality. This approach allows two different inter-

pretations. The first is the cohort interpretation: A single cohort is followed

throughout time. The second is the stationary population interpretation: the

life table is interpreted as a population in a steady state [Veerman 2007]. For

the purpose of effect analysis, the simulation is run twice: the first time with

the transition probabilities of the reference situation and the second time with

the transition probabilities reflecting the change in the exposure to risk fac-

tors due to the intervention. Either the exposure changes to a different level

or not. The model cannot accommodate policy interventions which develop
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their effects over time (say, every year 10% of smokers quit). In the cohort

based interpretation only statements about one cohort can be made. In the

population based approach statements can be made about the population as a

whole, but – as the model is static – it cannot be assessed when and by which

path the steady state is reached.

Dynamic Life Table

Dynamic life tables intend to overcome the limitation of a period life table

by adding the time dimension. A whole population divided into appropriate

classes (say, sex and 5-year-age intervals) is modeled. Transition probabilities

are applied to respective groups and determine the composition of the life table

in the next time period.7 To allow for consistency of the interpretation also

births are modeled, so that truly a whole population is simulated.

This model allows for varying the risk factor exposure over time as the

transition probabilities can be altered for every time point. It is dynamic and

allows to infer net changes of population health and the path by which they

are reached.

In principle, the number of classes in which a population can be split up

is not limited (so not only by age and sex, but also by disease status, socio-

economic status and so on), but for this approach increasing the number of

states also increases computational burden substantially.

7Example: The group for 40 to 44 year old men at time point t which contains 10,000
individuals has a .9 probability of staying healthy, a .05 probability of dying, and a .05
probability of disease. At t+1 the group of 45 to 49 year old men consists of 9,000 healthy
individuals, 500 dead, and 500 diseased.

30



SECTION 3. COMPUTER-BASED SIMULATIONS

Individual Sampling Models

Individual Sampling Models (ISM) are closely related to dynamic life tables.

They use a very similar model structure, but instead of modeling cohorts the

entity simulated is the individual by creating life histories. A great advantage

of such models is that they allow for heterogeneous populations. Transition

probabilities can be adjusted given some characteristic of the individual, by

that altering the inflexibility of a model using cohorts. From a computational

point of view, ISM can accommodate a higher number of states given the same

resources. This flexibility, however comes with a price. The computation time

is usually higher and the outcomes are stochastic as every transition is decided

by drawing from a random variable.

Discrete Event Simulations

Discrete Event Simulations (DES) are also set at the individual level. For every

individual, the waiting times until all theoretical possible events are calculated

and the individual then experiences the event with the shortest waiting time.

From this given event (that may or may not change the number and transition

probabilities to future events) again waiting times are calculated. Hence, these

simulations are event-driven, the change of state is stochastic and takes place

in continuous time. Interactions between entities can be modeled. This kind

of simulations allow very complex models. But there are onerous to build and

to utilize their full power, extensive data is needed.
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3.3 Multi State Modeling of Chronic Diseases

An HIA tool has to account for the following causal chain: ’determinants

→ risk factor exposure → health state → mortality’. For this part several

important elements can be learned from the epidemiological modeling of (non-

communicable) diseases. First, using an IPM (incidence-prevalence-mortality)

framework gives insights into the progression of a disease over time and the

different kind of mortality risks one has to take into account. Second, modeling

using a compartmental /discrete time approach. A (basic) IPM-model utilizes

the (mathematical) connection between related disease variables. The example

illustrates a single-disease model (see Figure 3.1): An individual or a cohort,

respectively, can be in either of four different states: healthy, diseased, dead

from the disease, or dead from all-other causes.

 All other mortality 
 

 
 
 

 

Cause specific  
deaths 

Remission 

Cases 
Incidence Case-Fatality

Susceptibles

All other  
deaths All other mortality 

Figure 3.1: A conceptual markov model of a single disease within the IPM-
framework. Source: [Kruijshaar et al. 2002]
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However, such a set up might prove to be too simple. In particular the

question how risk factors are incorporated into the model is crucial. Two

common approaches can be identified: either explicitly creating states for risk

factors (say, ’healthy and non-smoker’ vs. ’healthy and smoker’) or using the

potential impact fraction (PIF) to alter transition rates (see Figure 3.2). The

potential impact fraction
∑n

1
Pi(RRi−1)∑n

1
Pi(RRi−1)+1

– with RR and P being the relative

risk at a given exposure level and the population level or distribution of expo-

sure, respectively – quantifies the effect of the intervention on the transition

rate (e.g. a PIF of .1 means that the transition rates after the intervention will

be reduced by 10%). The main advantage of this model formulation is that

no data on transition probabilities between risk factor states are needed. The

relative risk and the prevalence of the risk factor are sufficient. However, this

simplification of the disease model comes with a price: It does not account for

mortality selection and ignores differences in risk factor exposure for different

cohorts.

Mortality selection denotes the phenomenon that certain groups of indi-

viduals have a higher overall mortality risk and therefore are ’selected’ out of

a population over time. An example would be smokers and never-smokers: as

smokers have a higher mortality risk, a higher proportion of smokers will have

died after some years than in the other sub-populations. In the PIF approach,

each subject, either smoker or never smoker is exposed to the same average

risk and change in risk due to the intervention, ignoring the fact that smokers

die out earlier than non-smokers. Hence, in a dynamic model – where the error
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accumulates over time – and by that grows in size – a model without modeling

risk-factor states explicitly will unavoidably produce a bias in the estimates.8.

PIF-based model 
 

 
 
Model with disease-risk factor states 

Healthy 
smokers 

Healthy 
Non smokers 

Diseased 
smokers 

Diseased  
non smokers 

 
Death 

Diseased  

 
Death 

% with risk factor in 
population + RR 

Healthy 

 

Figure 3.2: Comparison of PIF-based and Risk Factor models

The other limitation of the PIF approach for dynamic models is the lim-

ited possibility to include cohort differences in past and future exposure. In

8Little is known about the actual size of the bias and is certainly a function of the figures
used [Bronnum-Hansen 1999].
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a situation where successive birth cohorts have been exposed to unchanging

transition rates between risk factor states (e.g. constant age and sex specific

smoking start and quit rates), current prevalence of the risk factor (e.g. cur-

rent, former and never smoking by age and sex) captures all relevant exposure

information for disease models. However, for risk factors where transition rates

have changed over time (e.g. due to environmental or behavioral change), (i)

information on past exposure is additionally needed for risk factors with long-

lasting effects, and (ii) future prevalence of the risk factor by age is not likely

to be the same as the current exposure by age.

For risk factors (such as smoking), that have a lasting effect on disease risk

(such as cancer where the effect of smoking is still present after quitting smok-

ing), not only current risk factor exposure, but also past exposure influences

the risks of disease onset and death. Past exposure can be taken into account -

in a disease model that explicitly models risk factor exposure - by introducing

extra risk factor states, which reflect past exposure (e.g. stopped smoking less

then 1 year, stopped smoking 1-2 years, etc.). In a disease model without ex-

plicit modeling of risk factors - PIF-based models - the effects of past exposure

can only be partly handled by including information on the prevalence of the

risk factor (e.g. proportion of smokers) in the previous years. Partly, because

risk factor prevalence in the entire past population is used, instead of in the

current living population. There is a difference between the two as not the

entire population in previous years is still alive and mortality differs by risk

factors exposure (due to mortality selection relatively more smokers have died
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than non-smokers).

When there are substantial differences between generations (birth cohorts)

in past exposure, it is not realistic to assume that the current prevalence of the

risk factor by age will be constant in the future. For instance, older generations

of women (earlier birth cohorts) smoked less then younger generations today;

and in the future - when the currently younger women will reach older ages

- a larger proportion of them is likely to smoke than in today’s older women.

In a model with explicit risk factor states, this is automatically handled as

predicting future risk factor exposure is part of the modeling of the risk factor.

The future risk factor status is based on the current risk factor status (which

reflects past exposure between birth and the current age) and (future) tran-

sitions between risk factors exposure categories.9 For models without explicit

risk factors states, it is not straightforward how to deal with a situation where

the current risk factor distribution by age is not likely to hold for more recent

cohorts. It requires the future prevalence of risk factor (by age and sex) as

input for the model. This would involve using a cohort model to generate the

input, or such a model should be built in the PIF-based tool to generate these

data.

Apart from how risk factors are included it is important whether intermedi-

ate diseases as a special kind of risk factors are included. Intermediate diseases

are (chronic) diseases (e.g. diabetes) an individual can contract that change

9An exception is in a situation where the data on transitions are not available, and data
on net transitions are estimated from the current prevalence assuming a steady state (e.g.
constant transition rates between birth and current age). Then the future age distribution
is the same as the current one.

36



SECTION 3. COMPUTER-BASED SIMULATIONS

the risk of getting another disease (e.g. CVD), hence acting as a risk factor.

Ignoring this additional increase in risk for further diseases might substantially

underestimate the health effects of a primary risk factor (such as BMI) and

the effect of interventions targeting those primary risk factors.

The explicit modeling of risk factor states avoids the mentioned problems

(see Figure 3.2 bottom). It can better account for differences in the expo-

sure of risk factors over time and cohorts and different types of interventions

(both, interventions affecting the initial risk factor distribution and interven-

tions affecting transitions between risk factor states). Certainly, the PIF/PAR

approach has merit due to its limited data needs, but when PIF/PAR are used

to update prevalences in a dynamic model, bias may become substantive.

3.4 Embedding the Policy Effect

The effect of a policy on health is modeled via a change in risk factor exposure.

Two options have to be considered: First, whether the behavioral response

(and by that the change in risk factor exposure) to a policy is determined

exogenously or endogenously and, second, whether the whole population is

affected uniformly or if the effect depends (partly) on the characteristics of the

entity modeled.

The first option, whether the individuals follow some decision rule given

a policy change, is usually not part of an HIA tool. An example for an en-
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Table 3.2: Choices for Embedding a Policy Effect

Size of Policy Effect is
determined:

Uniform Effect on Enti-
ties

Differentiated Effect on
Entities

Behavioral response to
policy is exogenously

user determines change
of risk exposure by a
common factor for all
entities

user determines change
of risk factor for some
entities

Behavioral response to
policy is endogenously

n/a entities react to a pol-
icy change given a pre-
specified decision rule
and depending on their
characteristics

dogenous response would be a price change in, say, cigarettes. The change in

risk factor exposure would then be conditional on the behavioral change of the

respective individual. Whether he or she chooses to change his or her smoking

behavior and by what magnitude depends on further personal characteristics:

a rich long term smoker reacts certainly different to the same price increase

than an occasional smoker who has no income. This, in principle, could be

modeled, as it is done in the field of (micro) economics. Economists try to

answer questions such as how many people pick up work if income tax is low-

ered; not everybody reacts equally to that. A wealthy person certainly reacts

differently to a tax incentive than a poor person and so on.

But for modeling such decisions, one has to be aware that those are very

complex models that need rich data to be able to construct the actual decision

rule. The standard approach in HIA is instead to determine the size of the

change of the risk factor exposure externally by, for example, using estimates
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derived from econometric studies or expert opinions. This would mean that

the risk factor exposure is changed directly by some fixed amount, say, 10%

increased smokers cessation rate or 10% lower prevalence of smokers.

The second option, whether all entities are affected uniformly or not, has

important ramifications on the complexity of the policies that can be modeled.

An example for a uniform decrease in risk factor exposure is the reduction

of overall pollution in the air as everybody can be assumed to be equally

affected by that. Allowing to change risk factor exposure differentiated by

some characteristics of the individual would translate into changes like: The

policy is targeted at female teenagers, hence 20% less 16 year old females start

smoking whereas the reduction in 16 year old boys is only 5%.

Further thoughts are concerning the timing of the effect. It is certainly

more realistic that the change in risk factor exposure through a policy does

not materialize at once, but takes some time do so, such as, say, an annual

increase of tobacco prices. This would allow for changes like: Every year 5%

of all current smokers quit.

3.5 Evaluation of HIA Simulations: Validity

and Uncertainty

Validity To evaluate the validity of mathematical/computational models in

the field of (medical) simulations is both an important and difficult task. Im-

portant, as – most likely – the model will be used to generate knowledge on
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which decisions will be based. Difficult as a mathematical model – by its very

definition – is always a simplification of a real life phenomenon. The question

arises when the simplifications serve their purpose of finding a good enough

solution for the task at hand or when the simplifications make the model just

simplistic. A consensus has not been found to answer this question. However,

several authors developed guidelines for the assessment of such models. For

example, Buxton et al. [1997] give 5 recommendations for modelers. Sculpher

et al. [2000] outline over 30 questions for appraisal of a used model. Weinstein

et al. [2003] formulated guidelines for good practice in model building that list

over 40 items (with several sub-items). In a synthesis of the literature Philips

et al. [2006] develop a questionnaire consisting of more than 60 questions for

the appraisal of a model. Despite the ever growing list of (overlapping) rec-

ommendations all share two central arguments: modeling is useful and full

validity cannot be established.

These guidelines, however, consistently address three different areas of a

model building exercise: structure, data, and validity or consistency. The over-

arching theme is transparency, the model designer should be able to explain

in what ways the made assumptions alter the outcome.

Concerning the validity of a model the ISPOR task force differentiates

between face, internal, cross, and predictive validity [Weinstein et al. 2003].10

The face validity asks whether the results are explainable at the intuitive level.

The internal validity refers whether the implemented software is consistent

10This is a very similar notion to the three forms of validity as defined in section 2.4, with
internal and cross-validity being elements of overall formal validity
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with the specified mathematical model. Cross validity rests on the comparison

of the simulation results to the results of other models, discrepancies should be

explainable due to the model structure. Finally, predictive validity – although

desirable – is not considered essential.

Parameter Uncertainty An open, but important question is to what ex-

tent a model should be probabilistic. The explicit incorporation of parameter

uncertainty allows to quantify the uncertainty around the outcomes values

of the simulation. The methodology used here is a probabilistic sensitivity

analysis (PSA): given the distributional assumption made about an input pa-

rameter, random values for this parameter are drawn and the simulation is run

many times with the drawn values. The different simulation results (one for

each random draw) then give a distribution of the outcome in question (e.g.

life expectancy) with a point estimate and a variation around it.

Although some consider a PSA the gold standard in decision modeling, it

is not unanimously recommended [Weinstein et al. 2003; Halpern et al. 1998]

due to several reasons. Conceptually, the choice of a distribution around the

input parameters is non-trivial and not clear-cut. Furthermore, often (inap-

propriately) independence between the parameter distributions is assumed.

Technically, a PSA could account for the correlation between parameters, but

often the knowledge is lacking to properly specify such bi- or multivariate dis-

tributions. Pragmatically, the implementation of a PSA into a model is a

costly and complicated task. Furthermore, the calculation time for the run of
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a model increases tremendously and the model output increases in complexity,

making an interpretation more difficult.

Model Uncertainty Despite its theoretical value, very little advice exists

concerning the quantification of model uncertainty. A suggestion and prac-

tical application of model uncertainty for the case of standard life table has

been done by [Tainio et al. 2007]. In addition to modeling parameter uncer-

tainty they introduce model uncertainty via binary parameters. For certain

assumptions about the model structure they develop binary alternatives (e.g.

whether pollution has a causal link to cancer or not) and assign a probability

for each option (e.g. a probability of .9 for ”Yes” and .1 for ”No”). Now they

include values for this (structural) parameter in their PSA like an ordinary

input parameter. In effect they constructed two different models and assigned

a (subjective) probability which model is more likely. In the case of a (more

complex) simulation this approach would require to design and implement a

whole range of (very) different models.
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DYNAMO-HIA

4.1 Proposed Model Specification

We propose a dynamic simulation tool with explicit risk factor states (including

intermediate diseases) for annual, population-based data that models multiple

and varying chronic disease processes with a discrete time frame using a multi

state model (MSM). The model will be able to translate the epidemiologic

evidence into individual transition rates. The user determines the effects of

policies on risk factor exposure exogenously to the model. Several established

outcome measures highlighting the effect of the interventions compared with

the reference scenario will be readily calculated. It will be publicly available,

accompanied with data for selected diseases and risk factors, an extensive man-

ual including illustrative applications and recommendations for policy scenario

building.

43



SECTION 4. DYNAMO-HIA

The tool should be dynamic, hence, being able to make predictions for

single future time points and, furthermore, to show the effects of a policy on

population health during the simulated time span (about 10 to 15 years are

recommended, but longer time periods can be projected). A static model can-

not specify the time needed to reach the simulated outcome and outcomes at

intermediate time steps. Such insights, however, are important to better un-

derstand long and short term effects of a policy. The most commonly available

epidemiologic data is collected annually and aggregated at the population level.

This calls for a model in discrete time that can handle aggregated data. To be

able to model the distribution of health gains and losses within a population,

the tool should be able to model a sufficiently heterogeneous population. This

can be done using elements of micro simulation (more precisely an individ-

ual sampling model (ISM)) as it has individuals as the entity while using a

macro-level multi state model for the disease process.1 By that established

epidemiologic modeling standards can be used. Such an approach does not

automatically increase the data needs compared to a cohort based approach.

If fed with the same (aggregated) data as a cohort based model the same

predictions will be achieved. But if more detailed data is available, the ISM

approach is able to make use of it. The data needed to feed the model will

1This approach is somewhat related to the UKPDS model. It uses a micro simulation to
create ”biographies” of risk factor history as those can be rather complex to model using
cohort based models, in particular when the tool has to be generic to allow for different kind
of risk factors. At the disease – where we specify three template disease processes – level
the probabilities for incidence and mortality are then used deterministically to avoid undue
random noise from individual sampling. The rational behind this split is that some diseases
have such low probabilities of incidence that large numbers of individuals would have to be
simulated. We tentatively call this approach partial micro-simulation.
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be of such a nature that it should be obtainable for (almost) all European

countries.

The choice of modeling explicit risk factors avoids bias due to mortality

selection and handles differences in risk factor exposure between cohorts. The

use of a MSM approach is flexible enough to model various chronic disease pro-

cesses, by striking the balance between sufficiently realistic disease modeling

and technical feasibility. As modeling should be consistent with the epidemi-

ologic data available, the tool will model the time dependency of exposures

by linking relative risks to duration of being in a certain risk factor class (lag

time). In the examples for which the model will be used, this will be illustrated

with the effect of stopping smoking.

To avoid an overly complex model and assure that it is generic the change

of risk factor exposure due to a policy should be determined exogenously by

the user. The user should specify the intervention by either changing the

prevalence in risk factor exposure or change the transition between risk factor

states. Furthermore, the user should be able to differentiate the magnitude of

the change according to certain population characteristics such as age, sex, or

risk-factor status. This can be done with an ISM approach. Furthermore, the

ISM approach is – in principle – open to model decision making within the

simulation, allowing for the necessary flexibility for further developments of the

tool. The population projections will be done using birth figures from external

sources (e.g. EUROSTAT or from the respective national statistical offices).

Migrants and migration will not be modeled. For the former – migrants –
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very rarely risk factor or disease specific data is available to justify the added

complexity. The latter – migration – is very difficult to model2 and its inclusion

would not alter the overall outcome of the modeling exercise assuming that

the decision to migrate is independent of health determinants. Furthermore,

changes in future (overall) mortality are not modeled (apart from changes

caused by changes in risk factor exposure).

The presented output serves two purposes: i) communicate the differences

between the reference scenario and the intervention scenario and ii) to increase

transparency to let the end user check and understand the intermediate steps

how the presented output was derived. Since the model specification of the

model has multi state modeling as its core a whole range of outcome measures

can be presented such as disease incidence, and disease prevalence. In addition,

overall health measures, such as life expectancy, life years lost, or number of

deaths prevented can be obtained from the tool. Outcomes generally can

be differentiated by age, gender and calendar year. The choice of outcome

measures that will be provided to the user has to be conducted carefully, taking

into account the wishes of HIA experts and known caveats of the measures as

some measures might be misleading.

The tool will be publicly available to encourage a broad user base and

increase the verifiability the scientific community. User friendliness of the pro-

gram is a priority concern. This, of course, requires to design a user interface

that does not expect more than basic computer literacy. The graphical user

2As some put it: One cannot model migration for a given country without modeling the
rest of the world as well.
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interface should strive to be intuitive and self-explanatory. Furthermore, the

simulated output should be easily exportable to other programs used for the

presentation of the results. No specialized software should be required; the

tool should either come as stand-alone, platform independent software. The

tool will be accompanied by an extensive manual that also includes illustrative

examples with the accompanied data. It will give advice on how to construct

scenarios to compare different policy interventions and to conduct a sensitivity

analysis (see below).

The user targeted is more likely a practitioner than a research scientist.

To strike a balance between a sufficiently realistic model and applicability by

limiting data needs, we decided to simulate a single risk factor (three kinds are

possible: categorical, continuous, and duration of class membership; for more

details see section 5). In the case of a categorical risk factor up to nine different

risk factor categories can be specified. Although the number might seem low

a first, nine categories still allow for a sufficient degree of complexity as risk

factors combinations are possible such as ”‘smoker with high socioeconomic

status”’, ”‘smoker with low socioeconomic status”’, ”‘non-smoker with high

socioeconomic status”’ and so on. One should keep in mind that for such

models the problem is not so much to increase the number of risk factor classes,

but to get the necessary empirical data to feed such a model. Hence, we believe

that the chosen number of risk factor classes is a good compromise between

complexity and ease of use.
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4.2 Achieving Validity

To achieve overall validity for the proposed model, we follow a strategy we

loosely label evidence synthesis by focusing on the two elements (model struc-

ture and data) which are under our control right at the beginning of the model

building exercise. The disease model being proposed and implemented is well

founded in epidemiological evidence (such as using multistate modeling of

chronic disease with explicit risk factor states and inclusion of intermediate

diseases). Furthermore, the design of the model was undertaken in close co-

operation with experts in the field, that assessed the availability of certain

disease (cancer, CVD, and COPD) and risk-factor (smoking and BMI) data.

Hence, the model structure was designed in such a way that it does not depend

on data which is difficult or very costly to obtain, but can be used with data

which is available for most EU-countries. A crucial issue with disease data

(incidence, prevalence, mortality) is whether they are internally consistent as

consistency is a necessary pre-condition for a modeling exercise. In particular

for a dynamic model as the size of the error increases with each time step

(propagation of error). Validity of disease data can be checked and achieved

by the use of publicly available software.3

The careful designing and implementation of the tool with appropriate

quality data should ensure face and formal validity (consisting of internal and

cross validity) of the model. Internal validity, of course, will be established

3A well known tool – developed within the Global Burden of Disease project – for achiev-
ing internal consistency is DisMod II which can be downloaded at the WHO homepage
(http://www.who.int/healthinfo/boddismod/en/index.html).
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by careful testing of the software itself during the implementation phase. We

intend to assess cross validity by comparing the DYNAMO-HIA model with

already existing models in the field (such as PREVENT, MSLT, or RIVM-

CDM) using a facile, well-understood benchmark intervention-scenario.

Concerning the predictive validity of the tool certainly no genuine promises

can be made, except using an accepted and coherent model structure in con-

junction with accepted quality data. Furthermore, one should bear in mind

that an HIA tool always compares a reference scenario with an intervention

scenario that are both projected by the same model. An excluded factor –

such as an improvement in treatment – that affects both scenarios equally and

hence does not alter the ranking of interventions.

The robustness of the results can be assessed by conducting a one or multi-

way sensitivity analysis. In the former case, one input parameter is varied to

extreme (minimal and maximal), yet plausible, values to gauge its effect on the

overall model outcome. In the case of a multi-way sensitivity analysis several

input parameters are varied at once. To keep the number of simulations to

be run – and the forthcoming output – at a manageable level, the suggested

protocol is to develop a limited number of scenarios (e.g. worst case, best

case, medium case) and to report their outcomes. We will not, at this stage,

include a probabilistic sensitivity analysis (PSA) in the tool. This has mainly

pragmatic reasons. It is costly and time intensive to implement and cannot

be easily done within the given resources. We estimate that it would double

the programming efforts within our project. One has to note, however, that

49



SECTION 4. DYNAMO-HIA

the chosen model structure does allow for the implementation of a PSA in

the tool at a later time point, given the necessary resources. Furthermore, a

PSA is in its conceptual interpretation not straightforward. It requires at lot

of additional data – or at least informed assumptions – about the shape of

the random distribution to be chosen for the random draws. Additionally, a

truly meaningful PSA should allow for the correlation of the random variables,

increasing the need of data even further. Without a PSA, however, the model

still yields the expected outcome, just the variation around the outcome cannot

be assessed. In particular considering the nature of HIA-applications, in which

changes in exposure are compared, this is often sufficient.
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Technical Outline of

DYNMAO-HIA

The proposed model is in the form of an individual sampling model (ISM)

combining elements of micro simulations with a multi state model. This means

that first a population of individuals is generated, based on the data that are

given to the model, like percentage of smokers, percentage of persons with

diabetes etc. Secondly, the lives of these individuals are simulated over time

(simulation module), both in the current situation (which we will further call

the reference scenario), and under one or more policy scenarios. The model

will be able to construct scenarios reflecting either of the following two types:

• risk factor prevalence in initial population is changed (for example the

percentage smokers can be reduced in the baseline year to reflect a policy

that reduces smoking in the population)
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• transitions between risk factor states are changed (for example the quit

rates of smoking can be increased to reflect a policy that increases quit-

ting of smoking)

From the simulated life courses, the difference in population health out-

comes between the reference scenario and the policy scenario(s) will be calcu-

lated. Proposed outcomes are at least:

• Differences in the number of persons with a specific disease by age, sex,

and calendar year

• Differences in total mortality number and rates by age, sex, and calendar

year

• Differences in the number of life years lived

• Differences in the number of disability/health adjusted life years lived

Also the model will generate an output file containing detailed data for all

simulated years, so that researchers can make their own summary measures,

or can use the data in economic evaluations etc.

Figure 5.1 shows the general model proposed. The input of the model

consists of data on the population level. In order to be used in the simulation,

averages for the overall population have to be translated first in parameters for

transition rates on the individual level. For instance, the input incidence rates

reflect average incidence rates in the population. On the individual level,for

example one needs a different incidence rate for a smoker and a non-smoker.

In general, the individual rate will be parameterized by assuming that the
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individual incidence rate is equal to a baseline incidence rate times relative

risk. The latter will depend on the risk factors of the individual. The goal of

the parameter estimation module of the program is to estimate the parameters

needed to simulate individual transition rates. In the example, the parameters

needed are the baseline incidence rates and the relative risks. The latter are

direct input to the program, but the first needs to be estimated from the

population incidence rates, risk factor prevalence, and relative risks. Also, the

input data are not sufficient for the generation of an initial population. For

instance, while the input data will provide information on how many smokers

there are, and how many persons with a stroke, they do not provide direct

information on the number of smokers with a stroke. In the proposed model

these numbers will be estimated using amongst the relative risk of smoking

on stroke, the proportion of smokers, and population prevalence of stroke (an

overview about the parameter estimation module is given in table 5.1).

Model input In the following section we will list the input needed by the

model. Unless otherwise specified, all input is needed in 1 year age classes and

by gender. The input should have been checked for inconsistencies: specifi-

cally the disease data (incidence, prevalence, and excess mortality) should be

generated using, for example, the DISMOD program, and be smoothed. Also

the risk factor data are assumed to be smoothed.

The following input from data is needed:
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Parameter 
Estimation 
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of initial 
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Simulation 

Standard output 
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Scenario 
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Figure 5.1: Conceptual framework of proposed simulation.
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• Population numbers

• Total mortality rates

• Number of births in future years

• Prevalence of risk factors – those can be in one of three forms:

– A risk factor with a continuous distribution (for instance BMI); in

this case the input needed is: the shape of the distribution (normal

or lognormal), mean of the distribution and the standard deviation.

– A risk factor in classes (for instance: smokers / former smokers /

never smokers): the percentage in each class. A maximum of 9

classes can be entered in the program.1

– A risk factor in classes (as above), but with the addition that for

one class also the duration of being in this class is of interest (for

instance in case of smoking the duration of having stopped smoking

is of interest). Here we need as input (besides the percentage in each

class) also the distribution of the duration of stopping. This distri-

bution will be asked for in a parametric fashion (asking for the shape

of the distribution and for instance average stopping duration) or

in a non-parametric fashion (asking for the percentage of stoppers

that has stopped 1 years, 2 years, 3 years etc.). Alternatively, the

initial distribution can be uniformly distributed.

1The implementation of 9 categorical risk factor classes implies that already 16200 tran-
sitions must be specified: From each risk factor category to another risk factor category for
each age group by sex (9x9x2x100=18200).
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Only one risk factor can be entered in the model. However, the user could

use the 9 classes available to define ”compound risk factors” like ”smoking

alcohol drinkers”.

• Incidence rates of the diseases: Note that the definition of incidence rate

here is the number of new cases per person-year in those without the

disease.

• Acute fatality of disease: For diseases that are acutely fatal for a part of

the population, while leading to a chronic condition in others (like stroke

or myocardial infarction), the percentage of events (both first time and

recurrent events) that is acutely fatal. The precise definition of ”acute”

(for instance within 1 day, within 30 years or within 6 months) is left

to the user. This definition should be chosen in such a way that the

mortality rate after the acute period should be approximately constant

(apart from a possible increase due to aging).

• Excess mortality /Case fatality rate of the disease: this is defined as

the difference in mortality rate between those with the disease and those

without the disease (adjusted for age and gender)

OR

• Relative survival of the disease: this is defined as the ratio of the mor-

tality in those with the disease versus the mortality in the general pop-

ulation (adjusted for age and gender). This can be given as a constant
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rate over time or at different points in time after diagnosis (by age and

sex).

• Prevalence rate of the disease

• Relative risk of the risk factor on the disease. For a continuous risk

factor the relative risk for one unit increase in the risk factor should be

given. For a risk factor in classes relative risks should be given for each

class separately. In case a duration variable is added to the classified

risk factor, a relative risk at duration=0 (for decreasing risk with time)

or at duration=10 (for increasing risks) should be given, as well as the

duration at which the excess risk is halved. (That is: (RR-1) is 50% of

(RR-1) at duration=0 or 10).

• Relative Risk of total mortality

• Relative Risk of contracting a disease given an intermediate disease (if

included)

• Transition probabilities between risk factor categories2 (optional)

• DALY weights for the general population

• DALY weights for each disease

2This can be calculated by DYNAMO-HIA from the prevalence of the risk factor assuming
steady state and one direction of transition
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Diseases We distinguish the following type of diseases:

Independent diseases: With independent we mean that the risk of these

diseases does not depend on the presence or absence of other risk factors. De-

pendent diseases: These diseases can depend on the presence/absence of an

independent disease, but not on the presence/absence of another dependent

disease. Intermediate diseases: This are independent diseases that are them-

selves a risk factor for a dependent disease – such a disease has an intermediate

role in the causal pathway between risk factors and the dependent disease.

The basic model will include disease processes describing all chronic dis-

eases for which the excess mortality (defined as the difference in mortality rate

between those with the disease and those without the disease) only depends on

age and gender, but not on how long one has the disease. This type of disease

process is also included in DISMOD II [Barendregt et al. 2003a] software to

estimate consistent incidence, prevalence and mortality rates deals with this

type of disease process.

However, the assumption, that the excess mortality does not depend on

the duration of the disease is violated for two types of diseases included in

DYNAMO-HIA. First, for diseases like myocardial infarction or stroke, with

a very high mortality rate immediately after the event, followed by a period

with a constant but higher risk than in the general population. And, second,

for diseases like cancer, where the excess mortality depends on duration of the

disease through an exponential or Weibull function. The latter type of disease

process is included in MIAMOD software. In order to keep the model simple
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and to model all diseases in a similar fashion, we propose only to implement

the exponential function, which implies a constant mortality rate. However, we

will implement the often used mixture-cure model in order to accommodate

non-fatal cancers. In sum, up to three types of disease processes could be

accommodated by the model:

• A chronic disease, for which the excess mortality (defined as the differ-

ence in mortality rate between those with the disease and those without

the disease) only depends on age and gender, but not on how long one

has the disease.

• A partly acutely fatal disease: This are diseases (like myocardial infarc-

tion or stroke) that occur as a distinct event, that has a very high mortal-

ity rate immediately after the event, while those who survive this critical

period have a higher mortality than the general population. However,

after the critical period the excess mortality rate, like in the first disease

process, depends only on age and gender, and not on the duration of the

disease.

• A disease in which the excess mortality is constant in one group, while

the excess mortality is zero in others (cured fraction). As the part of the

patients that are ’cured’ can only be identified in retrospect (after all

diseased that have not been cured have died), it is less realistic to model

’cured’ with remission [Yu et al. 2004].
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Section 6

Appendix A: Overview of

Collaborating Partners and

Consulted Experts

The authors wish to thank all those who have provided suggestions to the

model specification during the design phase (at the Dynamo-HIA workshop

on 23rd of May, 2008, and by personal communication). They graciously

supported us with their knowledge and expertise in designing the proposed

model. The final responsibility with the model specification, however, rests

solely with the authors of this document
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Table 6.1: Overview of collaborating Partners and consulted Experts

Name Institute Country

Albreht, Tit Institute of Public Health of
the Republic of Slovenia

Slovenia

Aradottir, Anna Bjoerg Directorate of Health,
Reykjavik

Iceland

Baili, Paolo Instituto Nazionale dei Tu-
mori (INT)

Italy

Barendregt, Jan J School of Population
Health, University of
Queensland

Australia

Benett, Kathleen Trinity Centre for Health
Sciences, St James Hospital
/ Haughton Institute

Ireland

Branca, Francesco WHO Regional Office for
Europe, Copenhagen

Denmark

Brønnum-Hansen, Henrik National Institute of Public
Health, University of South-
ern Denmark

Denmark

Capewell, Simon Professor of Clinical Epi-
demiology, Division of Pub-
lic Health, University of
Liverpool

United Kingdom

Critchley, Julia Institute of Health and So-
ciety

United Kingdom

Dargent, Guy European Commission,
Public Health Executive
Agency

Luxembourg

De Vries, Esther Department of Public
Health, ErasmusMC

The Netherlands

Den Broeder, Lea National Institute of Pub-
lic Health and the Environ-
ment (RIVM)

The Netherlands

Erkki, Vartiainen Departmen of Epidemiol-
ogy, KTL

Finland

Escoval, Ana School of Public Health,
Lisbon

Portugal

Fehr, Rainer Institute of Public Health,
North Rhine-Westphalia

Germany

Fernandez, Esteve Institut Català d’Oncologia
/ IDIBELL

Spain

Fischer, Krista Department of Public
Health, University of Tartu

Estonia
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Name Institute Country

Galan, Adriana Institute of Public Health,
Bucharest

Romania

Hooijdonk, Carolien Department of Public
Health, ErasmusMC

The Netherlands

Janik-Koncewicz, Kinga Marie Sklodowska-Curie
Memorial Cancer Centre

Poland

Kalediene, Ramune Faculty of Public Health,
Kaunas University of
Medicine

Lithuania

Kunst, Anton Department of Public
Health, ErasmusMC

The Netherlands

Lang, Katrin Department of Public
Health, University of Tartu

Estonia

Lauer, Jeremy World Health Organization Switserland
Lobstein, Tim International Association

for the Study of Obesity
United Kingdom

Mackenbach, Johan Department of Public
Health, ErasmusMC

The Netherlands

Mathers, Colin WHO Headquarters Switzerland
McCarthy, Mark University College London United Kingdom
McKee, Martin London School of Hygiene

and Tropical Medicine
(LSHTM)

United Kingdom

Micheli, Andrea Instituto Nazionale dei Tu-
mori (INT)

Italy

Norheim, Ole Frithjof Department of Public
Health, University of
Bergen

Norway

Parry, Jayne Public Health, Epidemiol-
ogy and Biostatistics, Uni-
versity Birmingham

United Kingdom

Philalithis, Anastas Health Planning, University
of Crete

Greece

Pomerleau, Joceline London School of Hygiene
and Tropical Medicine
(LSHTM)

United Kingdom

Rabl, Ari Consultant on environmen-
tal impacts

France

Rehm, Juergen Centre for Addiction and
Mental Health, Toronto

Canada

Rutter, Harry National Obesity Observa-
tory

United Kingdom
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Name Institute Country

Sakallarides, Constantino Escola Nacionele de Salud
Publica, Lisbon

Portugal

Schaap, Maartje Department of Public
Health, ErasmusMC

The Netherlands

Smit, Jet National Institute of Pub-
lic Health and the Environ-
ment (RIVM)

The Netherlands

Soerjomataram, Isabelle Department of Public
Health, ErasmusMC

The Netherlands

Ünal, Belgin Department of Public
Health, University School
of Medicine Izmir

Turkey

Ungurean, Carmen Department of Strategy and
forecast in Public Health,
Institute of Public Health
Bucharest

Romania

Van der Heyden, Johan Scientific Institute of Public
Health

Belgium

Vartiainen, Erkki National Public Health In-
stitute

Finland

Veerman, Lennert School of Population
Health, University of
Queensland

Australia

Villerusa, Anita Department of Public
Health, Riga Stradins
University

Latvia

Vitrai, Jozsef HealthMonitor, Nonprofit
Public Purpose Ltd.

Hungary

Walls, Helen Department of Epidemi-
ology and Preventive
Medicine Faculty of
Medicine, Nursing and
Health Sciences, Monash
University

Australia

Wolfson, Michael Statistics Canada Canada
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Section 7

Appendix B: Review of Existing

Models

7.1 Search Strategy

Several different search strategies were used to identify software tools for quan-

titative effect analysis within an HIA framework. First, and foremost we used

a survey of experts in the field of HIA and simulation modeling. This survey

was augmented with an informal inquiry on the email lists ’Health Impact

Assessment for the United Kingdom and Ireland’ and ’Asia Pacific Health Im-

pact Assessment’, respectively. Furthermore, a keyword search on pubmed was

conducted (see Table 7.1 for an overview). Finally, an extensive review of grey

literature and relevant homepages was carried out to account for the applied
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nature of HIA.1

Table 7.1: Hits for the pubmed search conducted on 13. Feb. 2008.

Database Term Hits

pubmed ’health impact assessment’ and ’simulation’ 3
pubmed ’health impact assessment’ and ’mode*ing’ 5
pubmed ’health impact assessment’ and ’quantitative’ 11
pubmed ’health impact assessment’ and ’simulation’ 3
pubmed ’health impact assessment’ and ’model’ 17
pubmed ’health impact assessment’ and ’software’ 3
pubmed ’health impact assessment’ and ’prediction’ 6
pubmed ’health impact assessment’ and ’projection’ 7

Total hits: 55
40 excl. dupli-
cate hits

7.2 Evaluating Existing Models

In Table 7.2 we describe each reviewed model in terms of the developed cri-

teria of section 2.3. Many models are not publicly available and only limited

descriptions exist. Furthermore, some models are ongoing projects, making it

difficult to obtain up-to-date information. Hence, this is a tentative overview,

where the greatest uncertainties are marked with a question mark. Further-

more, we undertook a detailed review of selected models used for HIA. This

review only includes models that meet the three following criteria:

1A problem is to distinguish were simply a methodology was applied versus the use of an
actual simulation tool. We refrain from the inclusion of application of standard statistical
method such as regression or just individual quantitative studies (for an excellent overview
of quantitative studies within the HIA framework compare [Veerman et al. 2005]).

67



SECTION 7. APPENDIX B: REVIEW OF EXISTING MODELS

1. generic disease model with risk factor exposure

2. modeling of a general (and not patient-level) population

3. yields population health measure to have comparable outcomes

These are namely:

• ARMADA

• POHEM

• PREVENT

• RIVM-CDM

• Foresight Obesity Project
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7.3 Vignettes for Selected Models

7.3.1 ARMADA - Age Related M orbidity And Death

Analysis

Background: The ARMADA model has been devised by a research group

at University College London. It was specifically designed to fit into the HIA

framework. The declared objective of ARMADA is to ”provide ’broad brush’

population level estimates of likely changes in health relevant to the local

population.” The tools still seems to be under development and presently four

publications describing it exist. It has been applied to the HIA of road traffic

improvement and the long term effects of an incinerator site [McCarthy et al.

2002; McCarthy and Utley 2004].

Desiderata: The tool is not publicly available (currently, development

seems to be dormant). The heterogeneity of the population is modeled at the

cohort level differentiated by sex, age groups, and (environmental) risk status.

It is dynamic, longer time horizons can be projected (e.g. 15 years in one ex-

ample), and the projected figures are updated for every time step. The length

of the time step, however, has to equal the age band of the population (and

must be at least longer than 1 year). The disease model is based on a continu-

ous Markov chain that is evaluated a discrete time intervals. This implies that

health progression only depends on age, sex, current health status, and risk

exposure. The chosen mathematical structure allows for dependent diseases
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and risk factors and co-morbidity. It is a generic disease model, as there is

no upper limit on the number of health conditions and environmental factors

that can be included. The outcome measures are the increased (or decreased)

mortality or morbidity for every age group and sex for every modeled disease.

So far, no population level outcome measures – such as DALY – are imple-

mented. A real life population can be modeled and population dynamics (such

as birth) can be modeled as well.

Disease Model: The model is based a on a continuous Markov chain. The

population is divided by cohorts (based on sex and age group), and risk factor

classes. In each of theses sub-groups homogeneity is assumed. Hence, it is

similar to the modeling of a dynamic multi state life table. The number of risk

factors is F and within each risk factor there are X discrete states. Continuous

risk factors are not possible, but there is no limit on the number of discrete

classes. This means that there are XF combinations of risk factors. Hence, risk

factors are modeled explicitly and for every possible combination of risk factors,

there is a single number r denoting this state. Similar, there are C health

conditions and within these health conditions (diseases) there are p phases with

p = 1 indicating the absence of the health condition and p = P indicating death

from this health condition. Hence, there are PC different health states allowing

every possible combination, denoted by the index number s. The advantages of

this approach are that, as every combination of diseases is possible and their

severity can be modeled, there is no need to assume independence between
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diseases and every possible co-morbidity with every possible severity can be

specified. One has to note, however, that some of these health states are

nonsensical (such as dead from several diseases at once) and are not occupied.

A baseline hazard B is specified, giving the rate of transition from phase p = l

to p = k given a health condition. This baseline hazard has to be specified for

every possible transition and depends only on age, sex, and risk factor state

but not on duration of disease; duration could be modeled by increasing the

number of disease states. The risk factors are included as multipliers, given a

certain risk factor the baseline hazard is multiplied by a constant c, giving the

increased or decreased risk of this particular risk factor (combination). The

population state probability Z(a, v, r, s, t) gives the probability/proportion of

the population of age a with sex v in risk state r and health condition s at

time point t. The comparison of Zi (the simulation without the change in

risk factor exposure) with Zj (the simulation with the change in risk factor

exposure) gives the difference in mortality and morbidity for the two different

scenarios.

The disease model is able to model remission (returning from a severe

health state to a less sever health state or being healthy) and chronic disease

with an (in principle) unlimited number of progressions. Furthermore, partly

acutely disease could be modeled as well. However, a disease where the mor-

tality depends on the duration of disease can only be modeled through state

progression. The transition between states is deterministic and uncertainty is

not modeled.
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Distinctive Features: Any combination of health states and risk factor

exposure can be modeled (with increasing computing burden and data needs,

however), hence there is no need to assume independence given enough data is

available to calibrate the model and in particular the several baseline hazards.

Only a disease process with discrete states can be modeled and time duration

of a disease only within this framework. The effect of the risk factors on the

transition is multiplicative. The length of the simulated time step must be

longer than 1 year and equals the length of the age band. There are, so far, no

population level based outcome measures but only differences in probability

for morbidity and mortality by age group and sex. Uncertainty is not modeled

explicitly

7.3.2 Proportional Multi State Life Table – MSLT

Background The proportional multi-state life table (MSLT) is rather a method-

ological approach than a self contained software tool for HIA. However, it has

been used on several occasions – compare for example [Veerman et al. 2007])

– for HIA and hence we decided to discuss it in more detail. The proportional

MSLT has been developed by [Barendregt et al. 1998] to deal with multiple

morbidity and examples for HIA applications include the health effects of fruit

consumption and TV advertising for food products [Veerman 2007].

Desiderata: The proportional MSLT is implemented in a spreadsheet and,

hence, no piece of software as such. A spreadsheet template is not publicly
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available, but can be rather easily implemented in a standard spreadsheet

program (e.g. Excel). The heterogeneity of the population is modeled at the

cohort level differentiated by sex and age groups. The MSLT is static and

allows for two different interpretations: either a single cohort that is followed

from a specific age (usually birth) until the last member died or a population

in a steady state. The usual interpretation is the latter one; however, from the

MSLT one cannot infer when the steady state is reached or what trajectory is

followed to reach it. The MSLT uses a generic disease model based on the PIF

approach and the number of diseases that can be included is in principle not

limited. It is cohort based and assumes homogeneity within a state defined

by sex and age and disease. The outcome measures are differences in life

expectancy, DALY, and disease-specific mortality rates for each disease by sex

and age group. When the steady state interpretation is chosen, a real life

population can be modeled, however, without any population dynamics.

Disease Model: The model is based on period life table with a disease

model that uses the concept of population attributed risk (PAR) that at-

tributes the incidence of a disease in a population to the intervention when

the proportion of the exposed and the relative risk are known. Hence, risk

factor states are not included. A short-coming of the PAR is that an interven-

tion that reduces the exposure but does not eliminate it completely cannot be

modeled. This is overcome using the potential impact fraction (PIF):

PIF =
∑ (Pa−P ′

a)×(RRa−1)
Pa×(RRa−1)+1

=
∑

a
Pa×RRa−

∑
a

P ′
a×RRa∑

a
Pa×RRa
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The change in exposure Pa is used to calculate the reduction (or increase,

depending on the size of the relative risk) in incidence of a given disease due

to the intervention. The number of diseases is not limited and independence

between the diseases is assumed (e.g. an increase in exposure leads to an

increase in all incidences for the diseases affected by the respective risk). Two

populations are simulated: the first with the baseline exposure and the second

with the changed exposure due to the intervention. The population is usually

divided into cohorts by sex and in one-year age intervals, but this depends

on the available data. Risk factor states are not modeled and the change in

exposure in the population (Pa − P ′a) must be determined exogenously to the

model. In the applications of Veerman, a distributional assumption about the

consumption of fruits and vegetables (the exposure) is made depending on a

change in price. The MSLT has been used to model chronic diseases although

remission can be included. The transition between states is deterministic and

uncertainty is not modeled.

Distinctive Features: As the model is static, it cannot predict when

a health gain is reached and it cannot identify redistribution of health gains

between sub-groups of the population. The use of the PIF approach, which

does not use explicit risk factor states, does not allow for mortality selection,

but it has very modest data needs.
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7.3.3 POHEM (Population H ealth M odel)

Background POHEM is both an idea and a computer simulation model and

has been developed by Michael Wolfson at Statistics Canada. Originally, it

intended to provide a framework for understanding human health (data) and

some of these concepts of the framework have been used to design the software

tool of the same name. Three main goals of POHEM at its outset were to,

first, calculate generalizations of life expectancy measures (such as healthy life

expectancy), second, to provide coherence to health information data, and,

third, to support decision making in regard to healthy-affecting interventions.

Several applications exist already, mostly with Canadian data [Wolfson 1994].

Desiderata: POHEM is not publicly available, however, a library of pro-

gramming tools (called MODGEN) used in the design of POHEM is available

for download. The heterogeneity of the population can be specified to a very

detailed level. Not merely age and sex structure, but POHEM also models

life course events such as divorce and re-marriage. Furthermore, a host of

socioeconomic variables and events can be specified such as income, educa-

tional attainment, labor force participation, child leaving home. POHEM is

dynamic and models in continuous time. The disease model allows – in princi-

ple – for an unlimited number of states for a given disease or risk factor. Also

the complexity of the causal pathway between the risk factors and diseases is

not limited by the program. Outcome measures such as number of new cases,
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death, and summary measures (e.g. LE, DALE) can be obtained for any time

and at any detail of the population (e.g. age, sex, and SES). Furthermore,

cost-effectiveness of interventions can be modeled and the level of health care

utilization by the population as such or certain specified groups. A real life

population including births and whole family structures can be modeled.

Disease Model: POHEM is a discrete event simulation (DES) and the

epidemiological disease model is based on the concept of the next event: based

on the characteristics of the individual the time to a next event is drawn.

As POHEM models in continuous time the waiting time to all possible next

events (such as contracting a disease or progressing within a disease state) is

calculated. The event with the shortest waiting time is realized and then the

waiting time for the next possible event, given the present state, is calculated.

Diseases modeled with POHEM include coronary heart disease, lung cancer,

breast cancer, and dementia. Examples for risk factors are radon, blood pres-

sure, obesity, smoking and cholesterol (all potentially over the life course),

with several socio-economic variables as confounders and other diseases as risk

factors as well. This allows – in principal – for unlimited complexity. An

additional layer of complexity is added by the possibility to simulate events

affecting the socio economic characteristics, such as marriage or job loss. Two

kinds of data is needed, first, knowledge about the risk (or probability) of an

event given the characteristics of an individual, and, second, the characteristics

of the simulated individuals itself. The disease model is able to model chronic
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diseases, diseases with remission, partly actual disease, and diseases where the

health states depends on the duration of having this disease. Uncertainty is

modeled with uncertainty around the parameters (second order uncertainty),

several distributional assumptions can be made and a multi-way probabilistic

sensitivity analysis can be conducted.

Distinctive Features: The most distinctive feature of the POHEM model

is that arbitrarily complex diseases can be modeled, co-morbidity and mortality

selection are taken care of. However, this flexibility is limited not only by the

knowledge about the disease process in question, but also by the available

data. POHEM needs very rich, detailed data, preferably longitudinal, which

is seldom available in Europe. For Canada, usually a survey is used that

consists of over 100,000 records to simulate 2.4 million individual lives in a

single run.

7.3.4 Foresight Obesity Project

Background The Foresight Obesity Simulation (FOS) was developed by Klim

McPherson, Tim Marsh, and Martin Brown for the UK Government’s Foresight

project. FOS consists of two different modules. The first extrapolates trends

of obesity and the second simulates the effects of these BMI distributions on

several health conditions until the year 2050 [McPherson et al. 2007].

Desiderata: The program is not publicly available (and still under de-

velopment). The first module predicts the levels of future obesity with a re-
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gression model. The second module, the actual simulation, is dynamic and

projects the development over time. It uses discrete time intervals of 5 years,

the same length as the simulated age groups. The population heterogeneity for

the prediction module allows sex, age, ethnicity, social class, and region. The

simulation module differentiates by sex and age. The disease model uses only

one risk factor (BMI), but several diseases affected by it are included. It seems,

the simulations are done for each disease individually. Outcome measures are

prevalence and incidence, life expectancy, and – most notably – disease costs.

The total costs are the sum of the costs calculated for each individual dis-

eases. A real life population is modeled and population dynamics seems to be

included.

Disease Model: The aim of FOS is to assess the effect of obesity on

population health. The first module predicts the prevalence of obesity by age

group and sex until 2050. This is done for a continuous BMI, but the prevalence

is expressed in 6 discrete BMI groups. The specified regression mode is able

to accommodate the linear increase in some BMI groups observed between

1993 and 2004 without predicting a BMI group prevalence larger than 100 %.

The second module is based on a individual sampling model, and simulates the

change in BMI and incidence and prevalence of diseases for each individual.

To ensure that the prevalence distribution of BMI in the population does not

differ from the estimated trend the following equation is used:
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FBMI(b′|Ak+1, S, t+ 5) = FBMI(b|Ak, S, t)

An individual of sex S and age A will have a BMI of b′ in the next time

period (t+ 5) with probability given by the solution of this equation. For the

calculation of the incidence of a disease for a person in a given time interval,

two probabilities are needed. The first, T1, is the probability of the person

contracting the given disease if not overweight or obese. The second, T2, is the

probability of the person contracting when overweight or obese (given his BMI

group). The actual values for T1 and T2 depend on additional characteristics

of the individual (such as age, gender, and disease history) and T1 is smaller

than T2. Now, a random probability p is drawn for each individual. If p

is smaller than T1 the person develops the disease, if p is larger than T1 and

smaller than T2 the person is contracting the disease and his BMI is considered

to be the cause, and if p is large than T2, the individual does not get the

disease in this time step. The obesity related diseases are type-2 diabetes,

coronary heart disease, stroke, arthritis, and obesity related cancer. Mortality

is calculated using the RR based on BMI and does not take into account

whether the individual is diseased or not. The risk of getting a disease does not

depend on the presence of absence of any other diseases as those are modeled

separately. Uncertainty is not modeled explicitly, however, an error analysis

quantifying the errors of the BMI projection of module one and the variability
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due to the nature of the micro simulation in module 2 is available. For the

first part of the model (the regression based prediction of BMI prevalence)

confidence intervals are readily available.

Distinctive Features: The program is still under development and the

authors state the need to be tested and ”‘validated more rigorously”. An

distinctive feature of the program is to project the distribution of the risk factor

BMI independently from the simulation and use a mathematical structure to

ensure that the simulated individuals follow the prescribed prevalence pattern

over time.

7.3.5 PREVENT

PREVENT was developed by Jan Barendregt as a tool for policy makers in

1989 and is still ongoing work. The description is based on version 3. PRE-

VENT models a dynamic population in which risk factors and diseases are

embedded. It can model policy interventions by changing the prevalence of

risk factors in the population [Gunning 1999; Barendregt nd, 1999].

Desiderata: The tool is not publicly available (and still under active de-

velopment). It is implemented in a windows based software and requires MS-

Access for the data input. The heterogeneity of the population is modeled

at the cohort level, differentiated by ages and sex. It is dynamic, very long

time horizons can be projected and the figures are updated for every time step

(which have a length of one year). The disease model uses PIF and the change
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of the prevalence due to an intervention within the population to determine

the health effects. It is a generic disease model as different diseases can be

modeled. In PREVENT, a disease can have multiple risk factors and risk fac-

tor can cause multiple diseases. Furthermore, a disease can be a risk factor

for another disease. Several output measures exist by year, sex, and age, such

as number of death or mortality rates. Furthermore, population level outcome

measures exist such as life expectancy or years with disability. A real life

population is modeled including birth and migration.

Disease Model: The disease model is basically a dynamic life table that

uses the PIF methodology (see page 75). The user specifies the change in

risk factor prevalence for a given age. Within this age group homogeneity is

assumed. A limitation with specifying the risk factor prevalence for a given

age is that PREVENT does take into account mortality selection. The newest

version of PREVENT allows for categorical and continuous risk factors preva-

lence (but not explicit risk factor states). The categorical risk factors need RR

by category and the prevalence by category and year. For the continuous risk

factors a distribution some statistical distribution can be specified (such as

Normal, log-normal, or Weibull). Two simulations are run, first the baseline

simulation and then the intervention simulation with the changes in risk fac-

tor prevalence (user specified) due to the intervention. The outcome measures

are calculated by the difference of the two. The transition between states is

deterministic and uncertainty is not modeled.

Distinctive Features: The user can specify a time until the intervention
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starts to take effect and when it reaches full effect. This so called latency can

be modeled with different distributions e.g. linear or exponential. Further-

more, the uses can specify an autonomous trend of the incidence for a dis-

ease. The modeling at the cohort level does not allow for detailed population

heterogeneity or mortality selection. PREVENT makes several independence

assumptions, most notably for the distribution of risk factors, incidence rates,

and disease specific cause of death. The effect of an intervention is specified for

a certain age group and not for a cohort over time. The graphic output possi-

bilities of PREVENT allow for a comfortable communication of the simulation

results.

7.3.6 RIVM-CDM (Rijksinstituut voor Volksgezondheid

en Milieu-Chronic Disease Model

Background: The RIVM CDM model has been devised by the RIVM (Nether-

lands) as a tool for studying the effectiveness of policies for primary prevention

and to do burden of disease calculations in order to inform the Dutch Gov-

ernment of the current state of Public Health. In recent years use for cost-

effectiveness analysis has become a major application. It has been applied to

a broad range of policies such as interventions aimed at reducing smoking, in-

creasing use of bicycles for transportation, supplying fruit to primary schools,

effects of traffic noise and reduction of particular matter [Hoogenveen et al.

2005].
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Desiderata: The tool is not publicly available (unassisted use is not fea-

sible and the model is implemented in the commercial software Mathematica)

and ongoing work. The heterogeneity of the population is modeled at the cohort

level differentiated by sex, age groups, and risk factor status. It is dynamic,

longer time horizons can be projected (no limit) and the projected figures are

updated for every time step. The length of the time step is fixed at 1 year.

Although here described as a single model, actually there are several different

models. In principle all these models are base on a continuous Markov chain,

comprising both the diseases and the risk factors, that is evaluated at differ-

ent time (1-year) intervals. However, apart from the full Markov Model there

is also an approximated version, called the ”marginal model”. The marginal

model keeps track only of the marginal states, that is, for instance, the num-

ber of smokers in the population, or the number of persons with heart disease

in the population. It does not keep track of the joined states (e.g. smokers

with heart disease). Health progression in the model depends only on age, sex,

current health status (= presence of diseases), and risk exposure. The chosen

mathematical structure allows for dependent diseases and risk factors. It is a

generic disease model, as in principle there is no upper limit on the number of

health conditions and risk factors that can be included. The outcome measures

are the increased (or decreased) risk factor prevalence, mortality or morbidity

for every age group and sex for every modeled disease, life expectancy, health

adjusted life expectancy (using DALY weights) and costs of health care. A
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real life population can be modeled and population dynamics and immigra-

tion/emigration are modeled as well.

Disease Model: The model is based a on a continuous Markov chain.

The population is divided by cohorts (based on sex and age group), and risk

factor classes. In each of theses sub-groups homogeneity is assumed. Hence, it

is similar to the modeling of a dynamic multi state life table. The number of

risk factors is F and within each risk factor there are Xf discrete states. Con-

tinuous risk factors are not possible in the production version of the model, but

there is not limit on the number of discrete classes. In this model risk factors

are modeled explicitly and in the Full Markov Model for every possible com-

bination of risk factors, there is a single number r denoting this state. In the

marginal model, the distribution of the risk factors is assumed to be indepen-

dent of each other, and thus can be calculated from the marginal distributions

of each separate risk factor. Similar, there are C health conditions and within

these health conditions (diseases) there are 2 phases with p = 0 indicating the

absence of the health condition and p = 1 indicating the presence of this health

condition. Hence, there are 2C different health states allowing every possible

combination, denoted by the index number s. Again, in the marginal model

the joint states are calculated from the marginal states, taking conditional de-

pendence based on common risk factors or dependencies between diseases into

account. A baseline incidence rate B is specified, giving the rate of transition

from phase p = 0 to p = 1 given that all risk factors are in the reference state

(with relative risk =1 for the particular disease). For all other combination of

86



SECTION 7. APPENDIX B: REVIEW OF EXISTING MODELS

risk factor states, the incidence rate then is the baseline incidence rate multi-

plied by the relative risks that apply to the level of each risk factor. Relative

risks depend on age, sex, and risk factor state but not on duration of disease.

Effects of duration of disease have been model for diabetes by adding a dis-

ease progression indicator (HbA1c) as a risk factor to the model. Mortality

is included as the sum of other cause mortality, acute disease mortality and

disease attributable mortality. Disease attributable mortality depends on age

and gender, but not on the duration of disease. The population state probabil-

ity Z(a,v,r,s,t) gives the probability/proportion of the population of age a with

sex v in risk state r and health condition s at time point t. The comparison

of Zi (the simulation without the change in risk factor exposure) with Zj (the

simulation with the change in risk factor exposure) gives the difference in each

outcome for the two different scenarios.

The disease model is able to model remission. Furthermore, partly acutely

disease is be modeled as well. However, a disease where the mortality de-

pends on the duration of disease is only modeled through disease progression

markers (like lung function for COPD and HbA1c for diabetes). The transi-

tion between states is deterministic, but a micro-simulation variant is under

construction. Uncertainty is included by offering the possibility to calculate

elasticity coefficients, and an experimental option (that is, only for the relative

risk parameters) for Monte-Carlo sensitivity analysis is available, while more

extensive options are under construction.
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Distinctive Features: For the Full Markov Model, any combination of

diseases and risk factor exposure can be modeled. However, in practice the

number of risk factors and diseases that can be included is limited due to

computational limitation, and studying combinations of states demands hav-

ing internally consistent data, which limits the use of the Full Markov model.

Often assumptions are made for its use are similar to the assumptions used

to construct the marginal model. The marginal model can handle any num-

ber of risk factors and diseases. The effect of the risk factors on transitions

(both disease incidence and other cause mortality) is multiplicative, while the

effect of diseases on mortality is additive. The length of the simulatedt time

step is 1 year and equals the length of the age band. There are population

level based outcome measures, and there are limited probabilities for modeling

uncertainty. Furthermore, there are specific variants of the model that model

disease progression in diabetes patients and COPD-patients.
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7.4 Background on further Reviewed Models

This subsection gives some background information about the models reviewed.

Please note that the descriptions are abridged excerpts taken from the respec-

tive article, the homepages, or manuals of the respective programs.

CHD Model The coronary heart disease (CHD) model is one of the preva-

lence models, developed on behalf of the Association of Public Health Observa-

tories by the Yorkshire and Humber PHO and Eastern Region PHO to show the

expected prevalence of disease in given geographies and user-defined popula-

tions (http://www.apho.org.uk/resource/item.aspx?RID=48308). Other

examples are: the hypertension model (included in our review), the diabetes

model and the mental illness model. The CHD model is designed for esti-

mating the Primary Care Trust (PCT) level prevalence of patient-reported

doctor-diagnosed CHD. The model uses data from English health surveys us-

ing self-reported doctor-diagnosed CHD which has been shown to be predictive

of objective CHD, adjusted for PCT level deprivation.

GBD/DisMod DISMOD is a software tool to check the internal consistency

of epidemiological estimates of incidence, prevalence, duration and case fa-

tality for diseases (http://www.who.int/healthinfo/boddismod/en/index.

html). DISMOD is available in two versions: DISMOD I and II. DISMOD II is

a new software system developed to provide a full graphical interface, database

storage capabilities and substantially enhanced features and options [Baren-
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dregt et al. 2003b]. DISMOD I was used as an analytical tool in the WHO

Global Burden of Disease 1990 study. Based on the experience of the users, it

was decided to develop a new DisMod for the Global burden of Disease 2000

study that follows the same principles, but avoids some problems of the old

DisMod and adds a number of new features. The conceptual model of DisMod

II, like the original DisMod, is that of a multi-state life table. The model de-

scribes a single disease, together with mortality from all other causes. Healthy

people, defined as people unaffected by the disease being modeled, are subject

to an incidence hazard, and may become diseased. When diseased they are

subject to a hazard of dying from the disease, the case fatality, and to a hazard

of recovering from the disease (remission). Both, healthy and diseased people

are subject to the same mortality hazard from all other causes. Because of a

combination of analytical and numerical methods DisMod II accepts, in ad-

dition to the transition hazards incidence, remission and case fatality (or its

equivalent relative risk for total mortality), the following disease input vari-

ables: incidence as a population rate (with total population in the denominator

instead of person years at risk), prevalence, duration, and mortality.

ECOS/HECOS ECOS/HECOS is a tool (both web based and stand-alone),

designed to estimate the health and economic outcomes associated with smok-

ing and the benefits of smoking cessation on the population level [Antoñanzas

and Portillo 2003; Orme et al. 2001]. HECOS models smoking behavior and

associated mortality, morbidity, and health care costs. In the model, smokers
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are at risk from smoking related diseases (chronic obstructive pulmonary dis-

ease, asthma, chronic heart disease, stroke, lung cancer, and low birth weight

pregnancies) and may die prematurely as a result. Ex-smokers can also acquire

smoking related diseases, but their risk of disease will be less than that of a cur-

rent smoker. Death from non-smoking related causes are not captured in the

model. The smoking status of an individual in the model can be split into three

discrete (non-overlapping) states, namely: current smoker, recent quitter, and

long-term quitter. Furthermore, the health status of an individual can also

be split into three mutually exclusive states, namely: no morbidity (healthy),

morbidity (not healthy but alive), and dead. Altogether, an individual can be

in one of seven model states according to the smoking and health status of

that individual. The transition from one state to another is determined by the

rate at which smoking behavior changes (that is, quit rates and relapse rates),

as well as disease and mortality rates (from smoking related causes).

To model the effect of smoking cessation, the interface runs two parallel

calculations. In the first year of the model, one calculation moves a number

of smokers from the recent quitters state to the long-term quitters state, ac-

cording to the efficacy of the smoking cessation strategy chosen. The parallel

calculation assumes that the smoking cessation strategy did not take place.

The results in subsequent years are then compared to ascertain the benefit of

the incremental smoking cessation, which took place in the first year. This

approach takes into account those who would have quit smoking anyway, and

those who would have subsequently relapsed.
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Heat Cycling The health economic assessment tool for cycling (HEAT for

cycling) the economic savings resulting from reduced mortality due to cycling

(http://www.euro.who.int/transport/policy/20070503_1). For example

if x people cycle y distance on most days, what is the economic value of the

improvements in their mortality rate? HEAT for cycling can be applied in

many situations, for example:

- When planning a piece of new cycle infrastructure, it allows the user to model

the impact of different levels of cycling, and attach a value to the estimated

level of cycling when the new infrastructure is in place. This can be compared

to the costs to produce a cost-benefit ratio (and help make the case for invest-

ment), or as an input into a more comprehensive cost benefit analysis;

- To value the mortality benefits from current levels of cycling, such as to a

specific workplace, across a city or in a country;

- To provide input for more comprehensive cost-benefit. analyses.

Hypertension Model The hypertension model is one of the prevalence

models, developed on behalf of the Association of Public Health Observatories

by the Yorkshire and Humber PHO and Eastern Region PHO to show the

expected prevalence of disease in given geographies and user-defined popula-

tions (http://www.apho.org.uk/resource/item.aspx?RID=48308). Other

examples are: the coronary heart disease model (included in our review), the

diabetes model, and the mental illness model. The hypertension model aims

to produce Primary Care Trust (PCT) level prevalence estimates for hyper-
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tension. The estimated number of persons with hypertension is derived by

multiplying PCT registered populations by hypertension prevalence rates from

Health Surveys from England, adjusted for ethnicity. The model builds upon

an existing model developed by the Faculty of Public Health Medicine, which

did not include an adjustment for ethnicity.

IMPACT IMPACT is a cell-based, deterministic model originally devel-

oped to quantify the effects of improved treatments and population risk factor

changes on trends in CHD-mortality [Ford et al. 2007]. It compares two time

points in the past. It uses mortality rates from the first time point and applies

it to the second time point to calculate the difference, the number of death

prevented or postponed (DPP). To model the DDP attributable to a specific

treatment, the number of patients in a given age-sex stratum is multiplied

with the proportion of patients actually getting this treatment, the 1-year-

case-fatality rate, and the relative reduction of the 1-year-case fatality rate.

For risk factors such as blood pressure a similar procedure is used. IMPACT

has also been used for future predictions in the UK, Ireland and the USA.

(Personal Communication Simon Chapewell)

INTARESE The INTARESE model is based on a life table and assesses the

population effect of a reduction in overall pollution levels [Tainio et al. 2007].

It is part of the INTARESE project (http://www.intarese.org/). The main

focus of the project is the estimation of parameters measuring the mortality

stemming from pollution. The life table model predicts life-expectancy (LE)
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and monetary value of lost life years. The LE was predicted by defining the

change in the background hazard rate caused by local-traffic-related primary

fine particles. The time difference between an exposure and the consequent

health effects (lag) was included in the model. The monetary value of life-

year-lost was predicted by calculating a value for a life year and discounting

the future benefits and costs.

MIAMOD and PIAMOD MIAMOD and PIAMOD are statistical meth-

ods, developed by researchers from the Istituto Superiore di Sanita (National

Institute of Health, Rome, Italy) to estimate and project cancer incidence

and prevalence both at regional and national level (http://www.eurocare.

it/Miamod/Miamod.htm). The MIAMOD method (M ortality and I ncidence

Analysis MODel) has been first proposed [Angelis et al. 1994]. It involves

modeling incidence as an age, period, and cohort (APC) function and back-

calculating its parameters from cancer mortality and survival. Both observed

data and model-based survival estimates can be used. Based on APC estimated

parameters, incidence is projected into past and future years. Prevalence is

derived from estimated and projected incidence by convolution of cancer in-

cidence and survival over time. The PIAMOD (Prevalence and I ncidence

Analysis MODel) method is an alternative to MIAMOD for estimating and

projecting prevalence when incidence data are available, i.e. on the areas

covered by cancer registration. In PIAMOD observed incidence is directly

modeled as an APC model. Prevalence is derived, as in MIAMOD method,
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from the convolution of cancer incidence and survival over time.

MISCAN The MISCAN computer simulation program has been developed

for building models for cancer screening in a dynamic population, and for

subsequently applying these models to analyze and explain results of can-

cer screening trials, to predict and compare the (cost-) effectiveness of dif-

ferent screening policies, and to monitor the results of population screen-

ing programs [Habbema et al. 1985] (https://cisnet.flexkb.net/mp/pub/

cisnet_breast_erasmus_profile.pdf#pagemode=bookmarks). Several vari-

ants of the MISCAN model have been made and applied for cancer of the

cervix, breast, colon, and prostate. The MISCAN models use discrete event

based micro simulation: using the model inputs, independent life histories are

generated including a possible cancer history and the effects of treatment and

early detection by screening. In the standard MISCAN models, the natural

history is described by defining discrete tumor stages, transition probabilities

between these stages, and dwelling times in each stage. In a more recent vari-

ant, MISCAN-Fadia, a more biologically oriented continuous tumor growth

component as an alternative for the standard discrete stage natural history

and screening component in MISCAN is used.

POPMOD PopMod simulates the evolution in time of an arbitrary popu-

lation subject to births, deaths and two distinct disease conditions (http://

www.who.int/choice/toolkit/pop_mod/en/index.html). The model popu-

lation is segregated into male and female subpopulations, in turn segmented
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into age groups of one-year span. Each age-and-sex specific population group

is subdivided into four distinct states representing disease status. The four

states comprise two groups with specific disease conditions, a group with the

combined condition and a group with neither of the conditions. The states are

denominated for convenience X, C, XC, and S, respectively. Disease state en-

tirely determines health status and disease and mortality risk for its members.

PopMod simulates the time evolution of the population by means of a system

of ordinary differential equations. Basic PopMod output consists of the size

of the population age-sex groups reported at yearly intervals. From this out-

put further information is derived. Estimates of the severity of health states

are required for full results, which include standard life-table measures as well

as a variety of other summary measures of population health, which include

standard life-table measures as well as a variety of other summary measures

of population health. PopMod enables the analyst to model the incidence /

prevalence, remission and case-fatality associated with a given disease or risk

factor, both under the situation of no health care and also under the situation

of one or more effective interventions being in place (at a specified level of

coverage) [Lauer et al. 2003]. In order to estimate the population-level impact

of different health interventions, the population model PopMod tracks a whole

population (such as a whole country or WHO sub-region) over a period of 100

years. In this way, it is possible to establish the population-level health gain

(or disease burden averted) as a result of a given intervention, relative to doing

nothing.
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SimSmoke The SimSmoke tobacco control simulation model projects smok-

ing rates and deaths attributable to smoking (in total and for lung cancer,

COPD, heart, and stroke), and examines the effect of tobacco control policies

on those outcomes [Levy nd; Levy et al. 2000] (http://www.tobaccoevidence.

net/pdf/sea_activities/SimSmoke_asean.pdf). The model can be used to

examine the effect of policies individually and in combination on different ages

and other demographic groups. The model can be used for predictive/planning

purposes, justification of policies individually or as part of a comprehensive

tobacco control program, and to help facilitate understanding of the role of

tobacco control policies and how they may be most effectively implemented.

SimSmoke is developed in 3 parts:

1) The Population Module in which the population evolves through births and

deaths,

2) The Smoking Module distinguishes smokers, never smokers and 6 categories

of ex-smokers, and these numbers evolve based on initiation and cessation

rates, and death rates of smokers and ex-smokers relative to never smokers

3) Individual Policy Modules (taxes, clean air laws, media campaigns, cessa-

tion treatment programs and youth access enforcement) which translates the

effect of policies implemented in different ways on smoking rates. Currently,

the model distinguishes the population by age, gender and racial ethnic groups

represented (White, African American, Hispanic, Asian and other), and pre-

dicts smoking rates and deaths for each of the demographic groups. The age,

gender and especially racial/ethnic groups in the model can be adjusted as rel-
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evant to the important socio-demographic demographic differences and data

availability of other nations.

Quit Benefits (QBM) The Quit Benefits Model (QBM) is a Markov model,

programmed in TreeAge Pro, that assesses the consequences of quitting smok-

ing in terms of cases avoided of the four most common smoking-associated

diseases (acute myocardial infarction (AMI), stroke, lung cancer, and chronic

obstructive pulmonary disease (COPD), deaths avoided, and quality-adjusted

life-years and health care costs saved [Hurley and Matthews 2007]. The model

works as follows: at the beginning of the analysis period, all subjects (smok-

ers and quitters) are assumed to be in the health state ”Well”. During each

subsequent one year period (or cycle) simulated subjects can either stay in

the health state ”Well”, or, if one of the four smoking-related illnesses is diag-

nosed they move (transition) to the corresponding health state ”Stroke year

1”, ”Lung Cancer year 1”, ”AMI year 1”, or ”COPD”. If a subject dies, they

move to the health state ”Dead”. Subjects who develop COPD are assumed

to either stay in that state or die during subsequent cycles. The model is more

complex for the other three smoking-associated diseases to reflect the fact that

either the probabilities of death, or costs, or both, varied between or within

subsequent cycles. The following outcomes can be assessed separately for male

and female smokers and quitters, for various ages of quitting smoking, with

different durations of follow-up and different discount rates for future benefits:

Incidence of four diseases, total deaths, including deaths attributable to all
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smoking-related diseases, and deaths due to the above four diseases, life ex-

pectancy and Quality-adjusted life-expectancy (QALE). Quality adjustments

to life-expectancy were made based on the reduced utility of life associated

with each of the four specified smoking-related diseases.

UKPDS Outcomes Model The UKPDS Outcomes Model is a computer

simulation model for estimating the long-term impact of health interventions

for people with type 2 diabetes [Clarke et al. 2004] (http://www.dtu.ox.ac.

uk/OutcomesModel/UKPDSOutcomesManual.pdf). It has been developed pri-

marily to assess the lifetime benefits of diabetes-related interventions. In par-

ticular, it is intended to facilitate economic evaluations by estimating changes

in outcomes such as life expectancy and quality adjusted life expectancy, when

risk factors such as blood glucose level, blood pressure, lipid levels and smok-

ing status are changed. The UKPDS Outcomes Model uses a wide variety of

input data, including knowledge of previous events for individuals, and has the

ability to take into account changes in some risk factor levels over time. The

UKPDS Outcomes Model outputs are estimated Life Expectancy and Quality

Adjusted Life Expectancy for each member of a given population. It can be

applied to any population with type 2 diabetes.
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