

DYNAMO-HIA

How it works + presentation

Hendriek Boshuizen Stefan LHachimi Wilma Nusselder

11 November 201011/11/2010

Inhoud

DYNAMO-HIA: what does it do?

- Organizes and stores necessary input data sets
 - → REFERENCE DATA
- <u>Projects</u> how changes in risk factor distribution affect diseasespecific and summary measures of population health
 - → SIMULATION

User should tell the program how a policy affect risk factor exposure

SIMULATION in DYNAMO: how does it work?

- Situation with current risk factor exposure : Business-as-usual or reference scenario = reference scenario:
 - <u>initial exposure + future transitions</u>
- Situation with changed risk factor exposure
 - = intervention scenario
 - new initial exposure and/or future transitions
 - → Project future situation under both scenarios and compare
- Compare both situations: gives effect of policy, action or intervention
 - > Disease-specific measures
 - > Summary measure of population health

How does the projection work?

Standard causal pathway in epidemiology

- Markov modeling framework
 - Explicit risk factor states = follows persons with a particular risk factor level development
 - Disease states: incidence, prevalence, mortality (no recovery)
 - Competing risks are taken into account
- Technical realization
 - Dynamic micro simulation (risk factor)
 - Discrete time frame using a multi state model (disease process)

Population averages

I_{HD}=Incidence from Healthy to Diseased (minus Remission when specified) μ_{OC} =Other Cause Mortality, i.e. non-diseases and relative risk of one μ_{EM} =Excess Mortality, i.e. mortality due to diseases state

RR_{Overve git}=Relative Risk for incidence given overweight compared with normal weight RR_{Obese}=Relative Risk for incidence given obesity compared with normal weight RR^{OC}_{Onweight}= Relative Risk for other cause mortality given oneweight compared with normal weight RR^{OC}_{Obeas}= Relative Risk for other cause mortality given Obesity compared with normal weight

REFERENCE DATA in DYNAMO

= INPUT for the model

DYNAMO-HIA back-calculates from population-based data

→ Disease data can be used for all risk factors

Data-base storage is part of DYNAMO

Data on disease / risk factor must be complete before they can be used in simulation

a Dynamic Model for Health Impact Assessment

- Risk factor exposure types:
 - Categorical: never, current, former smokers
 - Continuous: mean BMI
 - Compound: former smokers by time since quitting
- Diseases: 3 types of disease processes
 - Chronic disease
 - Partly acute fatal disease
- Combination not allowed
- Disease with cured fraction
- Transitions between risk factor states: = define the future
 - Zero transitions = no change of individuals
 - Net transitions = keeps age-specific distribution constant
 - User-defined transitions

SCENARIO DEFINITION

DYNAMIC MODEL: → need to define the future

- Zero transitions = no change of individuals → cohort effect
- Net transitions = keeps age-specific distribution constant Also: changes in initial prevalence are retained→ no cohort effect

User-defined transitions

Now, let's see how it works

Exercise 3: running of predefined case

Predifined case= domestic falls in older persons

Reference scenario:

- ✓ Risk factor = percentage of barrier-free housing: 1% (same all ages)
 - + zero-transitions
- ✓ Population = any country
- ✓ Diseases = hip fractures
- ✓ Fractures as disease type with acute but no chronic mortality
- → zero excess mortality
- √
 → fatal fraction from CBS
- ✓ RR barrier-free housing on fractures = 0.5
- ✓ Incidence = hospital admission: ignores second fractures
- √ Prevalence = calculated from incidence and mortality

Intervention scenario:

- ✓ Baseline prevalence of housing changed to 100%
- ✓ zero transition rates

Website: www.dynamo-hia.eu

Email:

hendriek.boshuizen@rivm.nl w.nusselder@erasmusmc.nl

